Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Kalugin, Alexey"'
We discuss peculiarities of the Schwinger--DeWitt technique for quantum effective action, associated with the origin of dimensionally regularized double-pole divergences of the one-loop functional determinant for massive Proca model in a curved space
Externí odkaz:
http://arxiv.org/abs/2408.16174
Autor:
Kalugin, Alexey
In this note, we study A. Beilinson's gluing for perverse sheaves in the case of the diagonal arrangement and its relation to the Grothendieck-Teichm\"uller group. We also explain a relation to the Etingof-Kazhdan quantisation
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
http://arxiv.org/abs/2211.06947
Autor:
Kalugin, Alexey
In the present paper, we introduce and study oriented Getzler-Kapranov complexes. These complexes are generalizations of S. Merkulov's oriented graph complex. We investigate their relation to the cohomology of moduli spaces of complex and tropical cu
Externí odkaz:
http://arxiv.org/abs/2210.16267
Autor:
Kalugin, Alexey
In the present paper, we study a relation between the cohomology of moduli stacks of smooth and proper curves $\mathcal M_{g,n}$ and the cohomology of ribbon graph complexes. The main results of this work are proofs of T. Willwacher's conjecture and
Externí odkaz:
http://arxiv.org/abs/2205.00854
Autor:
Kalugin, Alexey
In this paper, we study the so-called Getzler-Kapranov complexes and their relation to the cohomology of moduli stacks of curves.
Comment: 28 pages. Proofs clarified a section about ribbon graphs was moved to the independent paper arXiv:2205.008
Comment: 28 pages. Proofs clarified a section about ribbon graphs was moved to the independent paper arXiv:2205.008
Externí odkaz:
http://arxiv.org/abs/2010.15804
Autor:
Kalugin, Alexey
In a present note we give a new proof of Etingof-Kazhdan quantization theorem.
Comment: 16 pages
Comment: 16 pages
Externí odkaz:
http://arxiv.org/abs/1911.05424
Autor:
Kalugin, Alexey
In present paper we develop categorical formalism of Verdier duality for diagrams of topoi. We use this approach to construct Grothendieck six operations formalism.
Comment: 32 pages v2. minor corrections and additional sections
Comment: 32 pages v2. minor corrections and additional sections
Externí odkaz:
http://arxiv.org/abs/1505.06922
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.