Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Kallel, Sadok"'
Autor:
AlSharawi, Ziyad, Kallel, Sadok
We consider the Ricker model with delay and constant or periodic stocking. We found that the high stocking density tends to neutralize the delay effect on stability. Conditions are established on the parameters to ensure the global stability of the e
Externí odkaz:
http://arxiv.org/abs/2407.21551
Autor:
Kallel, Sadok
This extensive survey is an invited contribution to the Encyclopedia of Mathematical Physics, 2nd edition. It covers both classical and more modern aspects of configuration spaces of points on a "ground space" $M$. Most results pertain to $M$ a manif
Externí odkaz:
http://arxiv.org/abs/2407.11092
We consider $k$-dimensional discrete-time systems of the form $x_{n+1}=F(x_n,\ldots,x_{n-k+1})$ in which the map $F$ is continuous and monotonic in each one of its arguments. We define a partial order on $\mathbb{R}^{2k}_+$, compatible with the monot
Externí odkaz:
http://arxiv.org/abs/2402.14127
Autor:
Kallel, Sadok, Louhichi, Sana
Publikováno v:
Adv. Appl. Probab. 56 (2024) 1339-1369
In this paper we extend results on reconstruction of probabilistic supports of random i.i.d variables to supports of dependent stationary $\mathbb R^d$-valued random variables. All supports are assumed to be compact of positive reach in Euclidean spa
Externí odkaz:
http://arxiv.org/abs/2307.11674
Autor:
Kallel, Sadok, Labassi, Faten
In this follow-up to [16], we continue developing the notion of a lego category and its many applications to stratifiable spaces and the computation of their Grothendieck classes. We illustrate the effectiveness of this construction by giving very sh
Externí odkaz:
http://arxiv.org/abs/2211.16546
We consider the general second order difference equation $x_{n+1}=F(x_n,x_{n-1})$ in which $F$ is continuous and of mixed monotonicity in its arguments. In equations with negative terms, a persistent set can be a proper subset of the positive orthant
Externí odkaz:
http://arxiv.org/abs/1912.07493
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ghazel, Moncef, Kallel, Sadok
We verify that for a finite simplicial complex $X$ and for piecewise linear loops on $X$, the "thin" loop space is a topological group of the same homotopy type as the space of continuous loops. This turns out not to be the case for the higher loops.
Externí odkaz:
http://arxiv.org/abs/1909.11139
Autor:
Kallel, Sadok
We compute the Euler characteristic with compact supports $\chi_c$ of the formal barycenter spaces with weights of a finite CW complex, connected or not. This reduces to the topological Euler characteristic $\chi$ when the weights of the singular poi
Externí odkaz:
http://arxiv.org/abs/1808.00038
Publikováno v:
Qualitative Theory of Dynamical Systems; 2024 Suppl 1, Vol. 23, p1-24, 24p