Zobrazeno 1 - 10
of 88
pro vyhledávání: '"Kalinowski Rafał"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 37, Iss 1, Pp 155-164 (2017)
The distinguishing number D(G) of a graph G is the minimum number of colors needed to color the vertices of G such that the coloring is preserved only by the trivial automorphism. In this paper we improve results about the distinguishing number of Ca
Externí odkaz:
https://doaj.org/article/86f68956ec164756bb7a7ff443aad0f7
A majority edge-coloring of a graph without pendant edges is a coloring of its edges such that, for every vertex $v$ and every color $\alpha$, there are at most as many edges incident to $v$ colored with $\alpha$ as with all other colors. We extend s
Externí odkaz:
http://arxiv.org/abs/2312.00922
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 36, Iss 1, Pp 5-22 (2016)
A graph G of order n is called arbitrarily partitionable (AP for short) if, for every sequence (n1, . . . , nk) of positive integers with n1 + ⋯ + nk = n, there exists a partition (V1, . . . , Vk) of the vertex set V (G) such that Vi induces a conn
Externí odkaz:
https://doaj.org/article/70a1d709dcf94ec783d7ba30b933b4ea
A graph $G$ is asymmetrizable if it has a set of vertices whose setwise stablizer only consists of the identity automorphism. The motion $m$ of a graph is the minimum number of vertices moved by any non-identity automorphism. It is known that infinit
Externí odkaz:
http://arxiv.org/abs/2301.10380
Autor:
Bock, Felix, Kalinowski, Rafał, Pardey, Johannes, Pilśniak, Monika, Rautenbach, Dieter, Woźniak, Mariusz
We propose the notion of a majority $k$-edge-coloring of a graph $G$, which is an edge-coloring of $G$ with $k$ colors such that, for every vertex $u$ of $G$, at most half the edges of $G$ incident with $u$ have the same color. We show the best possi
Externí odkaz:
http://arxiv.org/abs/2205.11125
Publikováno v:
The electronic journal of combinatorics 24(3) (2017), #P3.6
We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the di
Externí odkaz:
http://arxiv.org/abs/1910.12107
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kalinowski, Rafał, Pilśniak, Monika
Publikováno v:
In Discrete Mathematics August 2022 345(8)
Autor:
Kalinowski, Rafał, Pilśniak, Monika
Publikováno v:
In Applied Mathematics and Computation 15 May 2022 421
We introduce the {\it endomorphism distinguishing number} $D_e(G)$ of a graph $G$ as the least cardinal $d$ such that $G$ has a vertex coloring with $d$ colors that is only preserved by the trivial endomorphism. This generalizes the notion of the dis
Externí odkaz:
http://arxiv.org/abs/1311.6972