Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Kaleb Phipps"'
Autor:
Maximilian Beichter, Kaleb Phipps, Martha Maria Frysztacki, Ralf Mikut, Veit Hagenmeyer, Nicole Ludwig
Publikováno v:
Energy Informatics, Vol 5, Iss S1, Pp 1-21 (2022)
Abstract In the electricity grid, constantly balancing the supply and demand is critical for the network’s stability and any expected deviations require balancing efforts. This balancing becomes more challenging in future energy systems characteris
Externí odkaz:
https://doaj.org/article/fe299f6f38b04734b13ad43ec5c443ee
Autor:
Benedikt Heidrich, Lisa Mannsperger, Marian Turowski, Kaleb Phipps, Benjamin Schäfer, Ralf Mikut, Veit Hagenmeyer
Publikováno v:
Energy Informatics, Vol 5, Iss S1, Pp 1-20 (2022)
Abstract Sustainable energy systems are characterised by an increased integration of renewable energy sources, which magnifies the fluctuations in energy supply. Methods to to cope with these magnified fluctuations, such as load shifting, typically r
Externí odkaz:
https://doaj.org/article/13cb8d0746db4c64982edd78d71efac3
Publikováno v:
Wind Energy, Vol 25, Iss 8, Pp 1379-1405 (2022)
Abstract Capturing the uncertainty in probabilistic wind power forecasts is challenging, especially when uncertain input variables, such as the weather, play a role. Since ensemble weather predictions aim to capture the uncertainty in the weather sys
Externí odkaz:
https://doaj.org/article/8d56923b800f4a719713576bdd0b66bb
Autor:
Tilmann Gneiting, Daniel Wolffram, Johannes Resin, Kristof Kraus, Johannes Bracher, Timo Dimitriadis, Veit Hagenmeyer, Alexander I. Jordan, Sebastian Lerch, Kaleb Phipps, Melanie Schienle
Publikováno v:
Annual Review of Statistics and Its Application. 10:597-621
Model diagnostics and forecast evaluation are closely related tasks, with the former concerning in-sample goodness (or lack) of fit and the latter addressing predictive performance out-of-sample. We review the ubiquitous setting in which forecasts ar
As Electric Vehicle (EV) demand increases, so does the demand for efficient Smart Charging (SC) applications. How- ever, SC is only acceptable if the EV user’s mobility requirements and risk preferences are fulfilled, i.e. their respective EV has e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::428926b16bcdae8e8bc5657b16d08de4
https://doi.org/10.36227/techrxiv.22674997.v1
https://doi.org/10.36227/techrxiv.22674997.v1
Autor:
Benedikt Heidrich, Marian Turowski, Kaleb Phipps, Kai Schmieder, Wolfgang Süß, Ralf Mikut, Veit Hagenmeyer
Publikováno v:
Applied Intelligence, 53 (8), 8826–8843
Generated synthetic time series aim to be both realistic by mirroring the characteristics of real-world time series and useful by including characteristics that are useful for subsequent applications, such as forecasting and missing value imputation.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ff352123785f588ab95d643955d8444
Autor:
Marian Turowski, Moritz Weber, Oliver Neumann, Benedikt Heidrich, Kaleb Phipps, Hüseyin K. Çakmak, Ralf Mikut, Veit Hagenmeyer
Publikováno v:
Proceedings of the Thirteenth ACM International Conference on Future Energy Systems.
Publikováno v:
KITopen
ORCID
Datacite
ORCID
Datacite
Microgrids are a promising solution for providing renewable electricity access to rural populations in the Global South. To ensure such renewable microgrids are affordable, careful planning and dimensioning are required. High-resolution data on elect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb11c4dd2a672eebf711b48f114f05f6
https://publikationen.bibliothek.kit.edu/1000149157/149088889
https://publikationen.bibliothek.kit.edu/1000149157/149088889
Autor:
Kaleb Phipps, Marian Turowski, Stefan Meisenbacher, Martin Rätz, Veit Hagenmeyer, Ralf Mikut, Dirk Müller
Publikováno v:
WIREs Data Mining and Knowledge Discovery, 12 (6), Art.Nr. e1475
Review of automated time series forecasting pipelines 12(6), e1475 (2022). doi:10.1002/widm.1475
Review of automated time series forecasting pipelines 12(6), e1475 (2022). doi:10.1002/widm.1475
Review of automated time series forecasting pipelines e1475 (2022). doi:10.1002/widm.1475
Published by Wiley, Hoboken, NJ
Published by Wiley, Hoboken, NJ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ad7e11ae9a48d641a9fe9408f30a21b