Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Kalantarov, Varga K."'
The paper is devoted to the study of the backward behavior of solutions of the initial boundary value problem for the chevron pattern equations under homogeneous Dirichlet's boundary conditions. We prove that, as $t\rightarrow \infty$, the asymptotic
Externí odkaz:
http://arxiv.org/abs/2406.15315
Autor:
Gumus, Serap, Kalantarov, Varga K.
We study the problem of global exponential stabilization of original Burgers' equations and the Burgers' equation with nonlocal nonlinearities by controllers depending on finitely many parameters. It is shown that solutions of the controlled equation
Externí odkaz:
http://arxiv.org/abs/1912.05838
Autor:
Kalantarov, Varga K., Titi, Edriss S.
In this paper we introduce a finite-parameters feedback control algorithm for stabilizing solutions of the Navier-Stokes-Voigt equations, the strongly damped nonlinear wave equations and the nonlinear wave equation with nonlinear damping term, the Be
Externí odkaz:
http://arxiv.org/abs/1706.00162
Autor:
Kalantarov, Varga K., Özsarı, Türker
In this paper, we study the interaction between a nonlinear focusing Robin type boundary source, a nonlinear defocusing interior source, and a weak damping term for nonlinear Schr\"odinger equations posed on the infinite half line. We construct solut
Externí odkaz:
http://arxiv.org/abs/1508.01043
Autor:
Kalantarov, Varga K., Titi, Edriss S.
In this paper we introduce a finite-parameters feedback control algorithm for stabilizing solutions of various classes of damped nonlinear wave equations. Specifically, stabilization the zero steady state solution of initial boundary value problems f
Externí odkaz:
http://arxiv.org/abs/1501.00556
Autor:
Kalantarov, Varga K., Zelik, Sergey
We prove the existence of regular dissipative solutions and global attractors for the 3D Brinkmann-Forchheimer equations with the nonlinearity of an arbitrary polynomial growth rate. In order to obtain this result, we prove the maximal regularity est
Externí odkaz:
http://arxiv.org/abs/1101.4070
Recently, the Navier-Stokes-Voight (NSV) model of viscoelastic incompressible fluid has been proposed as a regularization of the 3D Navier-Stokes equations for the purpose of direct numerical simulations. In this work we prove that the global attract
Externí odkaz:
http://arxiv.org/abs/0709.3328
Autor:
Kalantarov, Varga K., Titi, Edriss S.
We investigate the long-term dynamics of the three-dimensional Navier-Stokes-Voight model of viscoelastic incompressible fluid. Specifically, we derive upper bounds for the number of determining modes for the 3D Navier-Stokes-Voight equations and for
Externí odkaz:
http://arxiv.org/abs/0705.3972
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 July 2013 403(1):89-94
Publikováno v:
In Journal of Differential Equations 2011 251(7):1841-1863