Zobrazeno 1 - 10
of 422
pro vyhledávání: '"Kalaj, David"'
Autor:
Jacimovic, Vlaidmir, Kalaj, David
We introduce the notions of \textit{conformal barycenter} and \textit{holomorphic barycenter} of a measurable set $D$ in the hyperbolic ball. The two barycenters coincide in the disk, but they differ in multidimensional balls $\mathbb{C}^m \cong \mat
Externí odkaz:
http://arxiv.org/abs/2410.02257
Autor:
Kalaj, David
Let $\mathbb{D}$ be the unit disk in the complex plane. Among other results, we prove the following curious result for a finite Blaschke product: $$B(z)=e ^{is}\prod_{k=1}^d \frac{z-a_k}{1-z \overline{a_k}}.$$ The Lebesgue measure of the sublevel set
Externí odkaz:
http://arxiv.org/abs/2407.19539
Autor:
Kalaj, David
We prove a contraction property of Fock type spaces $\mathcal{L}_{\alpha}^p$ of log-subharmonic functions in $\mathbb{R}^n$. To prove the result, we demonstrate a certain monotonic property of measures of the superlevel set of the function $u(x) = |f
Externí odkaz:
http://arxiv.org/abs/2407.06029
Autor:
Kalaj, David
Let $\mathbb{A}$ and $\mathbb{B}$ be circular annuli in the complex plane and consider the Dirichlet energy integral of $j-$degree mappings between $\mathbb{A}$ and $\mathbb{B}$. Then we minimize this energy integral. The minimizer is a $j-$degree ha
Externí odkaz:
http://arxiv.org/abs/2405.08902
Autor:
Kalaj, David
Let $\alpha>-1$ and assume that $f$ is $\alpha-$harmonic mapping defined in the unit disk that belongs to the Hardy class $h^p$ with $p\ge 1$. We obtain some sharp estimates of the type $|f(z)|\le g(|r|) \|f^\ast\|_p$ and $|Df(z)|\le h(|r|)\|f^\ast\|
Externí odkaz:
http://arxiv.org/abs/2402.16062
Autor:
Kalaj, David
Let $K\ge 1$ and $p\in(1,2]$. We obtain asymptotically sharp constant $c(K,p)$, when $K\to 1$ in the inequality $$\|\Im f\|_{p}\le c(K,p)\|\Re(f)\|_p$$ where $f\in \mathbf{h}^p$ is a $K-$quasiregular harmonic mapping in the unit disk belonging to the
Externí odkaz:
http://arxiv.org/abs/2310.12643
Autor:
Kalaj, David
Let $L^p(\mathbf{T})$ be the Lesbegue space of complex-valued functions defined in the unit circle $\mathbf{T}=\{z: |z|=1\}\subseteq \mathbb{C}$. In this paper, we address the problem of finding the best constant in the inequality of the form: $$\|f\
Externí odkaz:
http://arxiv.org/abs/2310.00464
Assume that $f$ is a real $\rho$-harmonic function of the unit disk $\mathbb{D}$ onto the interval $(-1,1)$, where $\rho(u,v)=R(u)$ is a metric defined in the infinite strip $(-1,1)\times \mathbb{R}$. Then we prove that $|\nabla f(z)|(1-|z|^2)\le \fr
Externí odkaz:
http://arxiv.org/abs/2305.10567
Autor:
Kalaj, David, Ramos, João P. G.
Assume that $\Delta_h$ is the hyperbolic Laplacian in the unit ball $\mathbb{B}$ and assume that $\Phi_n$ is the unique radial solution of Poisson equation $\Delta_h \log \Phi_n =-4 (n-1)^2$ satisfying the condition $\Phi_n(0)=1$ and $\Phi_n(\zeta)=0
Externí odkaz:
http://arxiv.org/abs/2303.08069