Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Kajimoto, Hiroshi"'
Autor:
Kajimoto, Hiroshi1 kajimoto@net.nagasaki-u.ac.jp
Publikováno v:
Graphs & Combinatorics. Jun2003, Vol. 19 Issue 2, p231-239. 9p.
Autor:
Kajimoto, Hiroshi, Eguchi, Kazuhiro
Publikováno v:
長崎大学教育学部紀要: 自然科学 = Bulletin of Faculty of Education, Nagasaki University : Natural Science. 79:1-4
Classical isoperimetric inequality is shown in a complex plane. In a complex plane we can use effectively the complex Fourier expansion in the computations.
長崎大学教育学部紀要: 自然科学, 79, pp.1-4; 2011
長崎大学教育学部紀要: 自然科学, 79, pp.1-4; 2011
Autor:
Kajimoto, Hiroshi
Publikováno v:
長崎大学教育学部紀要. 自然科学. 76:1-7
After the review on the virial expansion of an imperfect gas, several combinatorial relations among the coefficients of the virial expansion are discussed
長崎大学教育学部紀要. 自然科学, Vol.76, pp.1-7; 2008
長崎大学教育学部紀要. 自然科学, Vol.76, pp.1-7; 2008
Publikováno v:
長崎大学教育学部紀要. 自然科学. 70:1-7
We treat rotation matrices of given axes and angles in the space R^3 = ImH of pure imaginary quaternions. We give a product formula of rotation matrices of given axes vectors and so explain the group structure on SO(3)~RP^3 from the view point of a
Autor:
Sugawara, Tamio, Kajimoto, Hiroshi
Publikováno v:
Kyushu Journal of Mathematics. 52(2):287-297
Autor:
Adachi, Kenzo, Kajimoto, Hiroshi
Publikováno v:
長崎大学教育学部自然科学研究報告. 47:11-17
In this paper we study the ∂ problem on weakly q-convex domains and extend the results of Ho to unbounded q-convex domains with non-smooth boundary.
長崎大学教育学部自然科学研究報告. vol.47, p.11-17; 1992
長崎大学教育学部自然科学研究報告. vol.47, p.11-17; 1992
Autor:
Kajimoto, Hiroshi
Publikováno v:
長崎大学教育学部自然科学研究報告. 47:19-22
A revised version of the L2 estimate of my previous note and an alternative proof of the approximation theorem on a Stein manifold are given.
長崎大学教育学部自然科学研究報告. vol.47, p.19-22; 1992
長崎大学教育学部自然科学研究報告. vol.47, p.19-22; 1992
Autor:
Kajimoto, Hiroshi
Publikováno v:
長崎大学教育学部自然科学研究報告 = Science bulletin of the Faculty of Education, Nagasaki University. 42:7-16
A symmetric property of a minimal submanifold with respect to an involutive isometry is studied as the initial value problem of the minimal submanifold equation. The local existence and uniquness of this initial value problem is proved by the CauchyK