Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Kaimanovich, Vadim"'
Autor:
Kaimanovich, Vadim A., Woess, Wolfgang
We study branching Markov chains on a countable state space (space of types) $\mathscr{X}$, with the focus on the qualitative aspects of the limit behaviour of the evolving empirical population distributions. No conditions are imposed on the multityp
Externí odkaz:
http://arxiv.org/abs/2205.13615
Autor:
Bühler, Theo, Kaimanovich, Vadim A.
The original definition of amenability given by von Neumann in the highly non-constructive terms of means was later recast by Day using approximately invariant probability measures. Moreover, as it was conjectured by Furstenberg and proved by Kaimano
Externí odkaz:
http://arxiv.org/abs/2005.13752
Autor:
Erschler, Anna, Kaimanovich, Vadim
For any countable group with infinite conjugacy classes we construct a family of forests on the group. For each of them there is a random walk on the group with the property that its sample paths almost surely converge to the geometric boundary of th
Externí odkaz:
http://arxiv.org/abs/1903.02095
Autor:
Kaimanovich, Vadim A.
Publikováno v:
Unimodularity in randomly generated graphs, 129-154, Contemp. Math., 719, Amer. Math. Soc., Providence, RI, 2018
We suggest a new point of view on de Bruijn graphs and their subgraphs based on using circular words rather than linear ones.
Externí odkaz:
http://arxiv.org/abs/1812.01546
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kaimanovich, Vadim A.
We prove that random walks on Thompson's group $F$ driven by strictly non-degenerate finitely supported probability measures $\mu$ have a non-trivial Poisson boundary. The proof consists in an explicit construction of two different non-trivial $\mu$-
Externí odkaz:
http://arxiv.org/abs/1602.02971
Autor:
Kaimanovich, Vadim A.
Publikováno v:
Russian version: Zapiski Nauchnykh Seminarov POMI, vol. 441 (2015), 210-238
We interpret the probabilistic notion of unimodularity for measures on the space of rooted locally finite connected graphs in terms of the theory of measured equivalence relations. It turns out that the right framework for this consists in considerin
Externí odkaz:
http://arxiv.org/abs/1512.08479
By developing the entropy theory of random walks on equivalence relations and analyzing the asymptotic geometry of horospheric products we describe the Poisson boundary for random walks on random horospheric products of trees.
Externí odkaz:
http://arxiv.org/abs/1201.0329
We construct measures invariant with respect to equivalence relations which are graphed by horospheric products of trees. The construction is based on using conformal systems of boundary measures on treed equivalence relations. The existence of such
Externí odkaz:
http://arxiv.org/abs/0906.5296