Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Kai-Lang Yao"'
Autor:
Kai-Lang Yao, Wu-Jun Li
Publikováno v:
IJCAI
The exponential increase in computation and memory complexity with the depth of network has become the main impediment to the successful application of graph neural networks (GNNs) on large-scale graphs like graphs with hundreds of millions of nodes.
Autor:
Chen, Zhiqian1 (AUTHOR) zchen@cse.msstate.edu, Chen, Fanglan2 (AUTHOR) fanglanc@vt.edu, Zhang, Lei2 (AUTHOR) zhanglei@vt.edu, Ji, Taoran3 (AUTHOR) taoran.ji@tamucc.edu, Fu, Kaiqun4 (AUTHOR) kaiqun.fu@sdstate.edu, Zhao, Liang5 (AUTHOR) liang.zhao@emory.edu, Chen, Feng6 (AUTHOR) feng.chen@utdallas.edu, Wu, Lingfei7 (AUTHOR) lwu@email.wm.edu, Aggarwal, Charu8 (AUTHOR) charu@us.ibm.com, Lu, Chang-Tien2 (AUTHOR) ctlu@vt.edu
Publikováno v:
ACM Computing Surveys. May2024, Vol. 56 Issue 5, p1-42. 42p.
Autor:
Yao, Kai-Lang, Li, Wu-Jun
Publikováno v:
SCIENCE CHINA Information Sciences; Jul2024, Vol. 67 Issue 7, p1-12, 12p
Autor:
Yao, Kai-Lang, Li, Wu-Jun
Publikováno v:
ACM Transactions on Knowledge Discovery from Data; Jun2024, Vol. 18 Issue 5, p1-18, 18p
Autor:
KHOSHRAFTAR, SHIMA, AIJUN AN
Publikováno v:
ACM Transactions on Intelligent Systems & Technology; Feb2024, Vol. 15 Issue 1, p1-55, 55p