Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Kai Brünnler"'
Publikováno v:
Logical Foundations of Computer Science ISBN: 9783319720555
LFCS
LFCS
Blockchains are distributed data structures that are used to achieve consensus in systems for cryptocurrencies (like Bitcoin) or smart contracts (like Ethereum). Although blockchains gained a lot of popularity recently, there are only few logic-based
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9784f50093bcc86aeb24d66a4a246b96
Autor:
Kai Brünnler
Der Begriff Blockchain steht für einen technologischen Durchbruch auf dem Gebiet digitaler Währungen. Das Konzept hinter diesem Begriff ist allerdings nicht einfach zu verstehen. Eine Blockchain ist eine Datenstruktur, die in kryptografischen Proto
Autor:
Thomas Studer, Kai Brünnler
Publikováno v:
Annals of Pure and Applied Logic. 163(12):1838-1853
For some modal fixed point logics, there are deductive systems that enjoy syntactic cut-elimination. An early example is the system in Pliuskevicius (1991) [15] for LTL . More recent examples are the systems by the authors of this paper for the logic
Publikováno v:
MLQ. 54:345-349
We observe that removing contraction from a standard sequent calculus for first-order predicate logic preserves completeness for the modal fragment. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Autor:
Kai Brünnler
Publikováno v:
Logic Journal of IGPL. 11:525-529
I show two limitations of multiplicative (or context-independent) sequent calculi: contraction can neither be restricted to atoms nor to the bottom of a proof tree. There is a a set of rules for classical propositional logic, system SKS [1], with two
Autor:
Kai Brünnler, George Metcalfe
This book constitutes the refereed proceedings of the 20th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2011, held in Bern, Switzerland, in July 2011.The 16 revised research papers presented tog
Autor:
George Metcalfe, Kai Brünnler
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783642221187
Automated Reasoning with Analytic Tableaux and Related Methods
Automated Reasoning with Analytic Tableaux and Related Methods
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::45dc7cb5a3865f91c30919727607c2f1
https://doi.org/10.1007/978-3-642-22119-4
https://doi.org/10.1007/978-3-642-22119-4
Autor:
Kai Brünnler, Lutz Straßburger
Publikováno v:
Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX'09
Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX'09, 2009, Oslo, Norway
Lecture Notes in Computer Science ISBN: 9783642027154
TABLEAUX
Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX'09, 2009, Oslo, Norway
Lecture Notes in Computer Science ISBN: 9783642027154
TABLEAUX
We see cut-free sequent systems for the basic normal modal logics formed by any combination the axioms d, t, b, 4, 5. These systems are modular in the sense that each axiom has a corresponding rule and each combination of these rules is complete for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::722ae1735afb71613108204fe7688539
https://hal.inria.fr/inria-00436404
https://hal.inria.fr/inria-00436404
Autor:
Kai Brünnler
Publikováno v:
Brünnler, Kai (2009). Deep Sequent Systems for Modal Logic. Archive for mathematical logic, 48(6), pp. 551-577. Berlin: Springer International 10.1007/s00153-009-0137-3
We see a systematic set of cut-free axiomatisations for all the basic normal modal logics formed by some combination the axioms d, t, b, 4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in part
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6fda7db63a00b742fa734f110bf5316f
https://boris.unibe.ch/37189/1/Br_nnler2009_Article_DeepSequentSystemsForModalLogi.pdf
https://boris.unibe.ch/37189/1/Br_nnler2009_Article_DeepSequentSystemsForModalLogi.pdf
Autor:
Richard McKinley, Kai Brünnler
Publikováno v:
Logic for Programming, Artificial Intelligence, and Reasoning ISBN: 9783540894384
LPAR
LPAR
We set out to find something that corresponds to deep inference in the same way that the lambda-calculus corresponds to natural deduction. Starting from natural deduction for the conjunction-implication fragment of intuitionistic logic we design a co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b3c2638c13ec087e60261e403c611173
https://doi.org/10.1007/978-3-540-89439-1_34
https://doi.org/10.1007/978-3-540-89439-1_34