Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Kadri, Rajani"'
Autor:
Kadri, Rajani1 (AUTHOR), Shetty, Akansha1 (AUTHOR), Parameshwar, Devika1 (AUTHOR), Kudva, Ajay1 (AUTHOR), Achar, Asha2 (AUTHOR), Shetty, Jayaram1 (AUTHOR)
Publikováno v:
Indian Journal of Ophthalmology. May2022, Vol. 70 Issue 5, p1502-1512. 11p.
Autor:
KADRI, RAJANI1, SHETTY, PRERANA A.2 prerna.a.shetty@gmail.com, KUDVA, AJAY A.1, DEVIKA, P.3, SHETTY, AKANSHA4, SINHASAN, PRIYA4
Publikováno v:
Journal of Clinical & Diagnostic Research. Dec2021, Vol. 15 Issue 12, p7-12. 6p.
Autor:
Kadri, Rajani1 (AUTHOR), Vishwanath, Prithvi1 (AUTHOR), Parameshwar, Devika1 (AUTHOR), Hegde, Sudhir1 (AUTHOR), Kudva, Ajay1 (AUTHOR), Kudva, Ajay A2 (AUTHOR)
Publikováno v:
Indian Journal of Ophthalmology. Mar2021, Vol. 69 Issue 3, p661-665. 5p.
Publikováno v:
Journal of Clinical Ophthalmology & Research; Sep-Dec2023, Vol. 11 Issue 3, p210-215, 6p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kadri, Rajani1 rajani_kadri@rediffmail.com, Achar, Asha1, Tantry, Thrivikrama Padur1, Parameshwar, Devika1, Kudva, Ajay1, Hegde, Sudhir1
Publikováno v:
International Journal of Trichology. Jul-Sep2013, Vol. 5 Issue 3, p144-147. 4p. 4 Charts.
Autor:
Achar, Asha1 ashapraveenachar@yahoo.co.in, Kadri, Rajani1, Hegde, Sudheer1, Kudva, Ajay1, Devika, P.1, John, Vandana1
Publikováno v:
International Journal of the A.J. Institute of Medical Sciences. May2013, Vol. 2 Issue 1, p44-48. 5p.
Autor:
Kadri, Rajani1 rajani_kadri@rediffmail.com, Parameshwar, Devika1, Ilanthodi, Sandhya2, Hegde, Sudhir1
Publikováno v:
Middle East African Journal of Ophthalmology. Oct-Dec2013, Vol. 20 Issue 4, p366-368. 3p.
Autor:
Amador-Munoz, Diana Patricia
Publikováno v:
Vieira-Potter, Victoria J.; Karamichos, Dimitrios; Lee, Darren J. (2016) Ocular Complications of Diabetes and Therapeutic Approaches. En: BioMed Research International. Vol. 2016; 2314-6133; Consultado en: 2018/03/07/16:33:54. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826913/. Disponible en: 10.1155/2016/3801570.
Yau, Joanne W. Y.; Rogers, Sophie L.; Kawasaki, Ryo; Lamoureux, Ecosse L.; Kowalski, Jonathan W.; Bek, Toke; Chen, Shih-Jen; Dekker, Jacqueline M.; Fletcher, Astrid; Grauslund, Jakob; Haffner, Steven; Hamman, Richard F.; Ikram, M. Kamran; Kayama, Takamasa; Klein, Barbara E. K.; Klein, Ronald; Krishnaiah, Sannapaneni; Mayurasakorn, Korapat; O'Hare, Joseph P.; Orchard, Trevor J.; Porta, Massimo; Rema, Mohan; Roy, Monique S.; Sharma, Tarun; Shaw, Jonathan; Taylor, Hugh; Tielsch, James M.; Varma, Rohit; Wang, Jie Jin; Wang, Ningli; West, Sheila; Xu, Liang; Yasuda, Miho; Zhang, Xinzhi; Mitchell, Paul; Wong, Tien Y.; Meta-Analysis for Eye Disease (META-EYE) Study Group (2012) Global prevalence and major risk factors of diabetic retinopathy. En: Diabetes Care. Vol. 35; No. 3; pp. 556-564; 1935-5548; Disponible en: 10.2337/dc11-1909.
WHO | Diabetes country profiles 2016. En: WHO. Consultado en: 2018/03/07/15:45:37. Disponible en: http://www.who.int/diabetes/country-profiles/en/.
Powers, Alvin C.; Kasper, Dennis; Fauci, Anthony; Hauser, Stephen; Longo, Dan; Jameson, J. Larry; Loscalzo, Joseph (2015) Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. En: Harrison's Principles of Internal Medicine. New York, NY: McGraw-Hill Education; Consultado en: 2018/03/07/15:41:21. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1120816080.
International Diabetes Federation (2019) IDF Diabetes Atlas. Brussels, Belgium: International Diabetes Federation; Consultado en: 2020/11/03/14:20:44. Disponible en: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf.
Liang, Chun-Chi; Park, Ann Y.; Guan, Jun-Lin (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. En: Nature Protocols. Vol. 2; No. 2; pp. 329-333; 1750-2799; Disponible en: 10.1038/nprot.2007.30.
Srinivas, S. P.; Yeh, J. C.; Ong, A.; Bonanno, J. A. (1998) Ca2+ mobilization in bovine corneal endothelial cells by P2 purinergic receptors. En: Current Eye Research. Vol. 17; No. 10; pp. 994-1004; 0271-3683
Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo (2009) The effects of dexamethasone on the Na,K-ATPase activity and pump function of corneal endothelial cells. En: Current Eye Research. Vol. 34; No. 5; pp. 347-354; 1460-2202; Disponible en: 10.1080/02713680902829624.
Srinivas, Sangly P. (2012) Cell Signaling in Regulation of the Barrier Integrity of the Corneal Endothelium. En: Experimental Eye Research. Vol. 95; No. 1; pp. 8-15; 0014-4835; Consultado en: 2018/03/13/17:08:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271188/. Disponible en: 10.1016/j.exer.2011.09.009.
Mergler, Stefan; Pleyer, Uwe (2007) The human corneal endothelium: new insights into electrophysiology and ion channels. En: Progress in Retinal and Eye Research. Vol. 26; No. 4; pp. 359-378; 1350-9462; Disponible en: 10.1016/j.preteyeres.2007.02.001.
El-Agamy, Amira; Alsubaie, Shams (2017) Corneal endothelium and central corneal thickness changes in type 2 diabetes mellitus. En: Clinical Ophthalmology (Auckland, N.Z.). Vol. 11; pp. 481-486; 1177-5467; Disponible en: 10.2147/OPTH.S126217.
Sudhir, Rachapalle R.; Raman, Rajiv; Sharma, Tarun (2012) Changes in the corneal endothelial cell density and morphology in patients with type 2 diabetes mellitus: a population-based study, Sankara Nethralaya Diabetic Retinopathy and Molecular Genetics Study (SN-DREAMS, Report 23). En: Cornea. Vol. 31; No. 10; pp. 1119-1122; 1536-4798; Disponible en: 10.1097/ICO.0b013e31823f8e00.
Ljubimov, Alexander V. (2017) Diabetic complications in the cornea. En: Vision Research. Diabetic Retinopathy; Vol. 139; pp. 138-152; 0042-6989; Consultado en: 2018/03/13/16:51:28. Disponible en: http://www.sciencedirect.com/science/article/pii/S0042698917300470. Disponible en: 10.1016/j.visres.2017.03.002.
Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D. (2012) Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. En: American Journal of Human Genetics. Vol. 90; No. 3; pp. 533-539; 1537-6605; Disponible en: 10.1016/j.ajhg.2012.01.013.
Loganathan, Sampath K.; Schneider, Hans-Peter; Morgan, Patricio E.; Deitmer, Joachim W.; Casey, Joseph R. (2016) Functional assessment of SLC4A11, an integral membrane protein mutated in corneal dystrophies. En: American Journal of Physiology-Cell Physiology. Vol. 311; No. 5; pp. C735-C748; 0363-6143; Consultado en: 2018/03/13/16:43:25. Disponible en: https://www.physiology.org/doi/abs/10.1152/ajpcell.00078.2016. Disponible en: 10.1152/ajpcell.00078.2016.
Hopfer, Ulrike; Fukai, Naomi; Hopfer, Helmut; Wolf, Gunter; Joyce, Nancy; Li, En; Olsen, Bjorn R. (2005) Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. En: FASEB journal: official publication of the Federation of American Societies for Experimental Biology. Vol. 19; No. 10; pp. 1232-1244; 1530-6860; Disponible en: 10.1096/fj.04-3019com.
Jurkunas, Ula V.; Bitar, Maya S.; Funaki, Toshinari; Azizi, Behrooz (2010) Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. En: The American Journal of Pathology. Vol. 177; No. 5; pp. 2278-2289; 1525-2191; Disponible en: 10.2353/ajpath.2010.100279.
Jurkunas, Ula V.; Rawe, Ian; Bitar, Maya S.; Zhu, Cheng; Harris, Deshea L.; Colby, Kathryn; Joyce, Nancy C. (2008) Decreased expression of peroxiredoxins in Fuchs' endothelial dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 49; No. 7; pp. 2956-2963; 1552-5783; Disponible en: 10.1167/iovs.07-1529.
Baratz, Keith H.; Tosakulwong, Nirubol; Ryu, Euijung; Brown, William L.; Branham, Kari; Chen, Wei; Tran, Khoa D.; Schmid-Kubista, Katharina E.; Heckenlively, John R.; Swaroop, Anand; Abecasis, Goncalo; Bailey, Kent R.; Edwards, Albert O. (2010) E2-2 protein and Fuchs's corneal dystrophy. En: The New England Journal of Medicine. Vol. 363; No. 11; pp. 1016-1024; 1533-4406; Disponible en: 10.1056/NEJMoa1007064.
Kim, Eun Chul; Toyono, Tetsuya; Berlinicke, Cynthia A.; Zack, Donald J.; Jurkunas, Ula; Usui, Tomohiko; Jun, Albert S. (2017) Screening and Characterization of Drugs That Protect Corneal Endothelial Cells Against Unfolded Protein Response and Oxidative Stress. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 2; pp. 892-900; 0146-0404; Consultado en: 2018/03/13/16:30:52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295784/. Disponible en: 10.1167/iovs.16-20147.
Vedana, Gustavo; Villarreal, Guadalupe; Jun, Albert S (2016) Fuchs endothelial corneal dystrophy: current perspectives. En: Clinical Ophthalmology (Auckland, N.Z.). Vol. 10; pp. 321-330; 1177-5467; Consultado en: 2018/03/13/16:29:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762439/. Disponible en: 10.2147/OPTH.S83467.
Xia, Dan; Zhang, Shuai; Nielsen, Esben; Ivarsen, Anders Ramløv; Liang, Chunyong; Li, Qiang; Thomsen, Karen; Hjortdal, Jesper Østergaard; Dong, Mingdong (2016) The Ultrastructures and Mechanical Properties of the Descement’s Membrane in Fuchs Endothelial Corneal Dystrophy. En: Scientific Reports. Vol. 6; pp. 23096 2045-2322; Consultado en: 2018/03/13/16:27:02. Disponible en: https://www.nature.com/articles/srep23096. Disponible en: 10.1038/srep23096.
Shenoy, Radha; Khandekar, Rajeev; Bialasiewicz, Alexander; Al Muniri, Abdullah (2009) Corneal endothelium in patients with diabetes mellitus: a historical cohort study. En: European Journal of Ophthalmology. Vol. 19; No. 3; pp. 369-375; 1120-6721
Larsson, L. I.; Bourne, W. M.; Pach, J. M.; Brubaker, R. F. (1996) Structure and function of the corneal endothelium in diabetes mellitus type I and type II. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 114; No. 1; pp. 9-14; 0003-9950
Takahashi, Hiroshi; Akiba, Kiyoshi; Noguchi, Takayasu; Ohmura, Takeo; Takahashi, Ryoki; Ezure, Youji; Ohara, Kunitoshi; Zieske, James D. (2000) Matrix metalloproteinase activity is enhanced during corneal wound repair in high glucose condition. En: Current Eye Research. Vol. 21; No. 2; pp. 608-615; 0271-3683; Consultado en: 2018/03/13/11:27:30. Disponible en: https://www.tandfonline.com/doi/abs/10.1076/0271-3683%28200008%292121-VFT608. Disponible en: 10.1076/0271-3683(200008)2121-VFT608.
Matsuda, Mamoru; Awata, Takashi; Ohashi, Yuichi; Inaba, Masamaru; Fukuda, Masakatsu; Manabe, Reizo (1987) The effects of aldose reductase inhibitor on the corneal endothelial morphology in diabetic rats. En: Current Eye Research. Vol. 6; No. 2; pp. 391-397; 0271-3683; Consultado en: 2018/03/13/11:25:01. Disponible en: https://doi.org/10.3109/02713688709025192. Disponible en: 10.3109/02713688709025192.
Srivastava, Satish K; Yadav, Umesh C S; Reddy, Aramati BM; Saxena, Ashish; Tammali, Ravinder; Mohammad, Shoeb; Ansari, Naseem H; Bhatnagar, Aruni; Petrash, Mark J; Srivastava, Sanjay; Ramana, Kota V (2011) Aldose Reductase Inhibition Suppresses Oxidative Stress-Induced Inflammatory Disorders. En: Chemico-biological interactions. Vol. 191; No. 1-3; pp. 330-338; 0009-2797; Consultado en: 2018/03/13/11:23:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103634/. Disponible en: 10.1016/j.cbi.2011.02.023.
Hasan, S. Akbar (2010) The Cornea in Diabetes Mellitus. En: Diabetic Retinopathy. pp. 347-355; Springer, New York, NY; 978-0-387-85899-9 978-0-387-85900-2; Consultado en: 2018/03/13/11:21:29. Disponible en: https://link.springer.com/chapter/10.1007/978-0-387-85900-2_12.
Sagoo, Pervinder; Chan, Giulia; Larkin, Daniel F. P.; George, Andrew J. T. (2004) Inflammatory cytokines induce apoptosis of corneal endothelium through nitric oxide. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 11; pp. 3964-3973; 0146-0404; Disponible en: 10.1167/iovs.04-0439.
Apoptosis in the Endothelium of Human Corneas for Transplantation | IOVS | ARVO Journals. Consultado en: 2018/03/13/10:56:53. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2123710.
Haeberlein, S. L. (2004) Mitochondrial function in apoptotic neuronal cell death. En: Neurochemical research. Vol. 29; No. 3; pp. 521-530; 0364-3190; Consultado en: 2018/03/13/10:52:41. Disponible en: http://europepmc.org/abstract/med/15038600. Disponible en: 10.1023/B:NERE.0000014823.74782.b7.
Umapathy, Ankita; Donaldson, Paul; Lim, Julie (2013) Antioxidant Delivery Pathways in the Anterior Eye. En: BioMed Research International. Consultado en: 2018/03/13/10:44:40. Disponible en: https://www.hindawi.com/journals/bmri/2013/207250/.
Diecke, Friedrich P. J.; Ma, Li; Iserovich, Pavel; Fischbarg, Jorge (2007) Corneal endothelium transports fluid in the absence of net solute transport. En: Biochimica et Biophysica Acta (BBA). Vol. 1768; No. 9; pp. 2043-2048; 0005-2736; Consultado en: 2018/03/13/09:24:30. Disponible en: http://www.sciencedirect.com/science/article/pii/S0005273607001800. Disponible en: 10.1016/j.bbamem.2007.05.020.
Cuadrado Escamilla, José Luis (2009) Estudio anatomo-clínico y epidemiológico de la queratitis laminar difusa como complicación postquirúrgica de la fotoqueratomileusis (lasik). Valencia: Universitat de València, Servei de Publicacions
Hu, Rebecca G.; Zhu, Yuan; Donaldson, Paul; Kalloniatis, Michael (2012) Alterations of Glutamate, Glutamine, and Related Amino Acids in the Anterior Eye Secondary to Ischaemia and Reperfusion. En: Current Eye Research. Vol. 37; No. 7; pp. 633-643; 0271-3683; Consultado en: 2018/03/13/09:09:11. Disponible en: https://doi.org/10.3109/02713683.2012.669509. Disponible en: 10.3109/02713683.2012.669509.
Mergler, Stefan; Pleyer, Uwe; Reinach, Peter; Bednarz, Jürgen; Dannowski, Haike; Engelmann, Katrin; Hartmann, Christian; Yousif, Tarik (2005) EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells. En: Experimental Eye Research. Vol. 80; No. 2; pp. 285-293; 0014-4835; Disponible en: 10.1016/j.exer.2004.09.012.
Zhang, Wenlin; Li, Hongde; Ogando, Diego G.; Li, Shimin; Feng, Matthew; Price, Francis W.; Tennessen, Jason M.; Bonanno, Joseph A. (2017) Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium. En: EBioMedicine. Vol. 16; pp. 292-301; 2352-3964; Disponible en: 10.1016/j.ebiom.2017.01.004.
Harvitt, D. M.; Bonanno, J. A. (1998) Oxygen consumption of the rabbit cornea. En: Investigative Ophthalmology & Visual Science. Vol. 39; No. 2; pp. 444-448; 1552-5783; Consultado en: 2018/03/13/08:47:43. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2181302.
Wojcik, Katarzyna A.; Kaminska, Anna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P. (2013) Oxidative Stress in the Pathogenesis of Keratoconus and Fuchs Endothelial Corneal Dystrophy. En: International Journal of Molecular Sciences. Vol. 14; No. 9; pp. 19294-19308; 1422-0067; Consultado en: 2018/03/13/04:51:53. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794834/. Disponible en: 10.3390/ijms140919294.
Bourne, W. M. (2003) Biology of the corneal endothelium in health and disease. En: Eye (London, England). Vol. 17; No. 8; pp. 912-918; 0950-222X; Disponible en: 10.1038/sj.eye.6700559.
Lázaro, C. García; Castillo, A. Gómez; García, J. Feijóo; Macías, JM Benítez; García, J. Sánchez (2000) [Study of the corneal endothelium after glaucoma surgery]. En: Archivos de la Sociedad Espanola de Oftalmologia. Vol. 75; No. 2; pp. 75-80; 0365-6691; Consultado en: 2018/03/13/02:12:49. Disponible en: http://europepmc.org/abstract/med/11151123.
Murano, Nao; Ishizaki, Masamichi; Sato, Shigeru; Fukuda, Yuh; Takahashi, Hiroshi (2008) Corneal endothelial cell damage by free radicals associated with ultrasound oscillation. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 126; No. 6; pp. 816-821; 1538-3601; Disponible en: 10.1001/archopht.126.6.816.
Bonanno, Joseph A. (2003) Identity and regulation of ion transport mechanisms in the corneal endothelium. En: Progress in Retinal and Eye Research. Vol. 22; No. 1; pp. 69-94; 1350-9462
Remington, Lee Ann (2011) Clinical Anatomy of the Visual System E-Book. pp. 303 : Elsevier Health Sciences; 978-1-4557-2777-3
Wörner, Carlos H.; Olguín, Alicia; Ruíz-García, José L.; Garzón-Jiménez, Nuria (2011) Cell Pattern in Adult Human Corneal Endothelium. En: PLOS ONE. Vol. 6; No. 5; pp. e19483 1932-6203; Consultado en: 2018/03/11/16:58:12. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019483. Disponible en: 10.1371/journal.pone.0019483.
Liesegang, Thomas J. (2002) Physiologic changes of the cornea with contact lens wear. En: The CLAO journal: official publication of the Contact Lens Association of Ophthalmologists, Inc. Vol. 28; No. 1; pp. 12-27; 0733-8902
Standring, Susan (2016) Gray's anatomy : the anatomical basis of clinical practice. United States: New York : Elsevier Limited; 9780702052309 (main edition) 9780702063060 (international edition paperback) 9780702068515 (PDF, EPUB) 9780702068522 (Inkling interactive ebook)
Chen, Edwin S.; Terry, Mark A.; Shamie, Neda; Hoar, Karen L.; Friend, Daniel J. (2008) Descemet-stripping automated endothelial keratoplasty: six-month results in a prospective study of 100 eyes. En: Cornea. Vol. 27; No. 5; pp. 514-520; 1536-4798; Disponible en: 10.1097/ICO.0b013e3181611c50.
Murphy, C.; Alvarado, J.; Juster, R.; Maglio, M. (1984) Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. En: Investigative Ophthalmology & Visual Science. Vol. 25; No. 3; pp. 312-322; 0146-0404
Li, Q. J.; Ashraf, M. F.; Shen, D. F.; Green, W. R.; Stark, W. J.; Chan, C. C.; O'Brien, T. P. (2001) The role of apoptosis in the pathogenesis of Fuchs endothelial dystrophy of the cornea. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 119; No. 11; pp. 1597-1604; 0003-9950
Módis, László; Szalai, Eszter; Kertész, Katalin; Kemény-Beke, Adám; Kettesy, Beáta; Berta, András (2010) Evaluation of the corneal endothelium in patients with diabetes mellitus type I and II. En: Histology and Histopathology. Vol. 25; No. 12; pp. 1531-1537; 1699-5848; Disponible en: 10.14670/HH-25.1531.
Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh (2015) Progress in corneal wound healing. En: Progress in Retinal and Eye Research. Vol. 49; pp. 17-45; 1873-1635; Disponible en: 10.1016/j.preteyeres.2015.07.002.
Skarbez, Kathryn; Priestley, Yos; Hoepf, Marcia; Koevary, Steven B. (2010) Comprehensive Review of the Effects of Diabetes on Ocular Health. En: Expert review of ophthalmology. Vol. 5; No. 4; pp. 557-577; 1746-9899; Consultado en: 2018/03/07/16:34:08. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134329/. Disponible en: 10.1586/eop.10.44.
Kampik, D.; Ali, R. R.; Larkin, D. F. P. (2012) Experimental gene transfer to the corneal endothelium. En: Experimental Eye Research. Vol. 95; No. 1; pp. 54-59; 1096-0007; Disponible en: 10.1016/j.exer.2011.07.001.
Lwigale, Peter Y.; Bronner-Fraser, Marianne (2009) Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development. En: Developmental biology. Vol. 336; No. 2; pp. 257-265; 0012-1606; Consultado en: 2018/04/12/12:59:21. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800376/. Disponible en: 10.1016/j.ydbio.2009.10.008.
Zieske, James D. (2004) Corneal development associated with eyelid opening. En: International Journal of Developmental Biology. Vol. 48; No. 8-9; pp. 903-911; 0214-6282, 1696-3547; Consultado en: 2018/04/12/12:46:08. Disponible en: http://www.ijdb.ehu.es/web/paper/041860jz. Disponible en: 10.1387/ijdb.041860jz.
Voltage-dependent calcium channel, L-type, alpha-1 subunit (IPR005446) < InterPro < EMBL-EBI. Consultado en: 2018/05/29/13:18:43. Disponible en: http://www.ebi.ac.uk/interpro/entry/IPR005446.
Kurtenbach, Sarah; Kurtenbach, Stefan; Zoidl, Georg (2014) Emerging functions of pannexin 1 in the eye. En: Frontiers in Cellular Neuroscience. Vol. 8; 1662-5102; Consultado en: 2018/05/29/05:00:47. Disponible en: https://www.frontiersin.org/articles/10.3389/fncel.2014.00263/full. Disponible en: 10.3389/fncel.2014.00263.
Anumanthan, Govindaraj; Gupta, Suneel; Fink, Michael K.; Hesemann, Nathan P.; Bowles, Douglas K.; McDaniel, Lindsey M.; Muhammad, Maaz; Mohan, Rajiv R. (2018) KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis. En: PloS One. Vol. 13; No. 3; pp. e0192145 1932-6203; Disponible en: 10.1371/journal.pone.0192145.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 4; pp. 2020-2029; 1552-5783; Consultado en: 2018/05/29/02:25:41. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2188361. Disponible en: 10.1167/iovs.12-9475.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 4; pp. 2020-2029; 0146-0404; Consultado en: 2018/05/29/02:25:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995573/. Disponible en: 10.1167/iovs.12-9475.
Watsky, M. A.; Cooper, K.; Rae, J. L. (1992) Transient outwardly rectifying potassium channel in the rabbit corneal endothelium. En: The Journal of Membrane Biology. Vol. 128; No. 2; pp. 123-132; 0022-2631
Yang, Dongli; MacCallum, Donald K.; Ernst, Stephen A.; Hughes, Bret A. (2003) Expression of the Inwardly Rectifying K+ Channel Kir2.1 in Native Bovine Corneal Endothelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 44; No. 8; pp. 3511-3519; 1552-5783; Consultado en: 2018/05/28/15:10:58. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2200243. Disponible en: 10.1167/iovs.02-1306.
Kew, James N. C.; Davies, Ceri H. (2010) Ion Channels: From Structure to Function. pp. 586 : Oxford University Press; 978-0-19-929675-0
Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux | American Journal of Physiology-Cell Physiology. Consultado en: 2018/05/28/03:18:04. Disponible en: https://www.physiology.org/doi/abs/10.1152/ajpcell.00095.2016?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed.
Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. Consultado en: 2018/05/28/02:21:01. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995573/.
Huang, Hai; Pugsley, Michael K.; Fermini, Bernard; Curtis, Michael J.; Koerner, John; Accardi, Michael; Authier, Simon (2017) Cardiac voltage-gated ion channels in safety pharmacology: Review of the landscape leading to the CiPA initiative. En: Journal of Pharmacological and Toxicological Methods. Focused Issue on Safety Pharmacology; Vol. 87; pp. 11-23; 1056-8719; Consultado en: 2018/05/27/16:08:52. Disponible en: http://www.sciencedirect.com/science/article/pii/S1056871917300825. Disponible en: 10.1016/j.vascn.2017.04.002.
Wulff, Heike; Castle, Neil A.; Pardo, Luis A. (2009) Voltage-gated potassium channels as therapeutic targets. En: Nature Reviews. Drug Discovery. Vol. 8; No. 12; pp. 982-1001; 1474-1784; Disponible en: 10.1038/nrd2983.
Rae, J. L.; Shepard, A. R. (2000) Kv3.3 potassium channels in lens epithelium and corneal endothelium. En: Experimental Eye Research. Vol. 70; No. 3; pp. 339-348; 0014-4835; Disponible en: 10.1006/exer.1999.0796.
Rudy, B.; Maffie, J.; Amarillo, Y.; Clark, B.; Goldberg, E. M.; Jeong, H.-Y.; Kruglikov, I.; Kwon, E.; Nadal, M.; Zagha, E.; Squire, Larry R. (2009) Voltage Gated Potassium Channels: Structure and Function of Kv1 to Kv9 Subfamilies. En: Encyclopedia of Neuroscience. pp. 397-425; Oxford: Academic Press; 978-0-08-045046-9; Consultado en: 2018/05/27/04:00:30. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780080450469016302.
Voltage-gated potassium channels | Introduction | BPS/IUPHAR Guide to PHARMACOLOGY. Consultado en: 2018/05/25/13:47:52. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=81.
Grizel, A. V.; Glukhov, G. S.; Sokolova, O. S. (2014) Mechanisms of Activation of Voltage-Gated Potassium Channels. En: Acta Naturae. Vol. 6; No. 4; pp. 10-26; 2075-8251; Consultado en: 2018/05/24/19:53:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273088/.
Joyce, Nancy C.; Harris, Deshea L. (2010) Decreasing expression of the G1-phase inhibitors, p21Cip1 and p16INK4a, promotes division of corneal endothelial cells from older donors. En: Molecular Vision. Vol. 16; pp. 897-906; 1090-0535
Rae, J. L.; Watsky, M. A. (1996) Ionic channels in corneal endothelium. En: The American Journal of Physiology. Vol. 270; No. 4 Pt 1; pp. C975-989; 0002-9513; Disponible en: 10.1152/ajpcell.1996.270.4.C975.
Yu, Frank H; Catterall, William A (2003) Overview of the voltage-gated sodium channel family. En: Genome Biology. Vol. 4; No. 3; pp. 207 1465-6906; Consultado en: 2018/05/21/13:23:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153452/.
Chhabra, Mahendra; Prausnitz, John M.; Radke, Clayton J. (2009) Modeling corneal metabolism and oxygen transport during contact lens wear. En: Optometry and Vision Science: Official Publication of the American Academy of Optometry. Vol. 86; No. 5; pp. 454-466; 1538-9235; Disponible en: 10.1097/OPX.0b013e31819f9e70.
Li, Shimin; Allen, Kah Tan; Bonanno, Joseph A. (2011) Soluble adenylyl cyclase mediates bicarbonate-dependent corneal endothelial cell protection. En: American Journal of Physiology. Cell Physiology. Vol. 300; No. 2; pp. C368-374; 1522-1563; Disponible en: 10.1152/ajpcell.00314.2010.
Sun, Xing Cai; Zhai, Chang-Bin; Cui, Miao; Chen, Yanqiu; Levin, Lonny R.; Buck, Jochen; Bonanno, Joseph A. (2003) HCO(3)(-)-dependent soluble adenylyl cyclase activates cystic fibrosis transmembrane conductance regulator in corneal endothelium. En: American Journal of Physiology. Cell Physiology. Vol. 284; No. 5; pp. C1114-1122; 0363-6143; Disponible en: 10.1152/ajpcell.00400.2002.
Rauz, Saaeha; Walker, Elizabeth A.; Murray, Philip I.; Stewart, Paul M. (2003) Expression and distribution of the serum and glucocorticoid regulated kinase and the epithelial sodium channel subunits in the human cornea. En: Experimental Eye Research. Vol. 77; No. 1; pp. 101-108; 0014-4835
Sánchez, J. M.; Li, Y.; Rubashkin, A.; Iserovich, P.; Wen, Q.; Ruberti, J. W.; Smith, R. W.; Rittenband, D.; Kuang, K.; Diecke, F. P. J.; Fischbarg, J. (2002) Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium. En: The Journal of Membrane Biology. Vol. 187; No. 1; pp. 37-50; 0022-2631; Disponible en: 10.1007/s00232-001-0151-9.
Fischbarg, Jorge (2010) Fluid Transport Across Leaky Epithelia: Central Role of the Tight Junction and Supporting Role of Aquaporins. En: Physiological Reviews. Vol. 90; No. 4; pp. 1271-1290; 0031-9333; Consultado en: 2018/05/17/20:38:47. Disponible en: https://www.physiology.org/doi/abs/10.1152/physrev.00025.2009. Disponible en: 10.1152/physrev.00025.2009.
Riley, M. V.; Winkler, B. S.; Starnes, C. A.; Peters, M. I. (1997) Fluid and ion transport in corneal endothelium: insensitivity to modulators of Na(+)-K(+)-2Cl-cotransport. En: The American Journal of Physiology. Vol. 273; No. 5 Pt 1; pp. C1480-1486; 0002-9513
Diecke, Friedrich P.; Wen, Quan; Iserovich, Pavel; Li, Jianfeng; Kuang, Kunyan; Fischbarg, Jorge (2005) Regulation of Na-K-2Cl cotransport in cultured bovine corneal endothelial cells. En: Experimental Eye Research. Vol. 80; No. 6; pp. 777-785; 0014-4835; Disponible en: 10.1016/j.exer.2004.12.008.
Watsky, M. A.; Rae, J. L. (1991) Resting voltage measurements of the rabbit corneal endothelium using patch-current clamp techniques. En: Investigative Ophthalmology & Visual Science. Vol. 32; No. 1; pp. 106-111; 0146-0404
Zhang, Wenlin; Ogando, Diego G.; Bonanno, Joseph A.; Obukhov, Alexander G. (2015) Human SLC4A11 Is a Novel NH3/H+ Co-transporter. En: The Journal of Biological Chemistry. Vol. 290; No. 27; pp. 16894-16905; 1083-351X; Disponible en: 10.1074/jbc.M114.627455.
Bonanno, Joseph A. (2012) Molecular Mechanisms Underlying the Corneal Endothelial Pump. En: Experimental Eye Research. Vol. 95; No. 1; pp. 2-7; 0014-4835; Consultado en: 2018/05/09/04:12:43. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199349/. Disponible en: 10.1016/j.exer.2011.06.004.
Redbrake, C.; Salla, S.; Frantz, A.; Reim, M. (1999) Metabolic changes of the human donor cornea during organ-culture. En: Acta Ophthalmologica Scandinavica. Vol. 77; No. 3; pp. 266-272; 1395-3907
Reim, M.; Lax, F.; Lichte, H.; Turss, R. (1967) Steady State Levels of Glucose in the Different Layers of the Cornea, Aqueous Humor, Blood and Tears in vivo. En: Ophthalmologica. Vol. 154; No. 1; pp. 39-50; 0030-3755, 1423-0267; Consultado en: 2018/05/08/20:19:19. Disponible en: https://www.karger.com/Article/FullText/305147. Disponible en: 10.1159/000305147.
Kumagai, A. K.; Glasgow, B. J.; Pardridge, W. M. (1994) GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. En: Investigative Ophthalmology & Visual Science. Vol. 35; No. 6; pp. 2887-2894; 0146-0404
Verkman, AS (2002) Aquaporin water channels and endothelial cell function. En: Journal of Anatomy. Vol. 200; No. 6; pp. 617-627; 0021-8782; Consultado en: 2018/05/08/19:17:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1570747/. Disponible en: 10.1046/j.1469-7580.2002.00058.x.
Kuang, Kunyan; Yiming, Maimaiti; Wen, Quan; Li, Yansui; Ma, Li; Iserovich, Pavel; Verkman, A. S.; Fischbarg, Jorge (2004) Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice. En: Experimental Eye Research. Vol. 78; No. 4; pp. 791-798; 0014-4835; Disponible en: 10.1016/j.exer.2003.11.017.
Mendez, M. G.; Restle, D.; Janmey, P. A. (2014) Vimentin enhances cell elastic behavior and protects against compressive stress. En: Biophysical Journal. Vol. 107; No. 2; pp. 314-323; 1542-0086; Disponible en: 10.1016/j.bpj.2014.04.050.
He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles (2016) 3D map of the human corneal endothelial cell. En: Scientific Reports. Vol. 6; pp. 29047 2045-2322; Consultado en: 2018/05/07/18:57:20. Disponible en: https://www.nature.com/articles/srep29047. Disponible en: 10.1038/srep29047.
Hejtmancik, J. Fielding; Nickerson, John M. (2015) Molecular Biology of Eye Disease. pp. 573 : Academic Press; 978-0-12-801267-3
Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016) Chapter 1. En: The Eye (Fourth Edition). pp. 1-102.e2; W.B. Saunders; 978-0-7020-5554-6; Consultado en: 2018/05/03/02:38:01. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780702055546000010.
Chang, Hui; Ma, Yu-Guang; Wang, Yun-Ying; Song, Zhen; Li, Quan; Yang, Ning; Zhao, Hua-Zhou; Feng, Han-Zhong; Chang, Yao-Ming; Ma, Jin; Yu, Zhi-Bin; Xie, Man-Jiang (2011) High glucose alters apoptosis and proliferation in HEK293 cells by inhibition of cloned BKCa channel. En: Journal of Cellular Physiology. Vol. 226; No. 6; pp. 1660-1675; 1097-4652; Consultado en: 2018/05/03/02:07:35. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.22497. Disponible en: 10.1002/jcp.22497.
Stepp, Mary Ann (2006) Corneal integrins and their functions. En: Experimental Eye Research. Vol. 83; No. 1; pp. 3-15; 0014-4835; Disponible en: 10.1016/j.exer.2006.01.010.
Fernández, A.; Moreno, J.; Prósper, F.; García, M.; Echeveste, J. (2008) Regeneración de la superficie ocular: stem cells/células madre y técnicas reconstructivas. En: Anales del Sistema Sanitario de Navarra. Vol. 31; No. 1; pp. 53-69; 1137-6627; Consultado en: 2018/05/02/14:27:44. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1137-66272008000100005&lng=es&nrm=iso&tlng=es.
Goel, Manik; Picciani, Renata G; Lee, Richard K; Bhattacharya, Sanjoy K (2010) Aqueous Humor Dynamics: A Review. En: The Open Ophthalmology Journal. Vol. 4; pp. 52-59; 1874-3641; Consultado en: 2018/05/02/03:36:27. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032230/. Disponible en: 10.2174/1874364101004010052.
Dawson, D G.; John L. U; Henry F. Edelhauser (2011) Cornea and Sclera. En: Adler's Physiology of the Eye.: W B Saunders Company; 978-0-323-05714-1 978-0-323-08116-0; Consultado en: 2018/05/02/02:21:35. Disponible en: https://www.elsevier.com/books/adlers-physiology-of-the-eye/levin/978-0-323-05714-1.
Güell, J. L. (2015) Cornea. pp. 138 : Karger Medical and Scientific Publishers; 978-3-318-05453-8
Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016) Chapter 4. En: The Eye (Fourth Edition). pp. 157-268.e4; W.B. Saunders; 978-0-7020-5554-6; Consultado en: 2018/05/01/23:26:43. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780702055546000046.
Untitled Document. Consultado en: 2018/05/01/22:20:36. Disponible en: http://med.javeriana.edu.co/oftalmologia/materiales/refraccion.htm.
Mannis, Mark J.; Holland, Edward J. (2016) Cornea E-Book. pp. 2189 : Elsevier Health Sciences; 978-0-323-35758-6
Williams, K. Keven; Noe, Robin L.; Grossniklaus, Hans E.; Drews-Botsch, Carolyn; Edelhauser, Henry F. (1992) Correlation of Histologic Corneal Endothelial Cell Counts With Specular Microscopic Cell Density. En: Archives of Ophthalmology. Vol. 110; No. 8; pp. 1146-1149; 0003-9950; Consultado en: 2018/05/01/20:44:16. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/639808. Disponible en: 10.1001/archopht.1992.01080200126039.
Zhang, Xue; Zeng, Xuhui; Xia, Xiao-Ming; Lingle, Christopher J. (2006) pH-regulated Slo3 K+ Channels: Properties of Unitary Currents. En: The Journal of General Physiology. Vol. 128; No. 3; pp. 301-315; 0022-1295; Consultado en: 2018/04/30/23:27:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151565/. Disponible en: 10.1085/jgp.200609551.
Du, Jintang; Aleff, Ross A.; Soragni, Elisabetta; Kalari, Krishna; Nie, Jinfu; Tang, Xiaojia; Davila, Jaime; Kocher, Jean-Pierre; Patel, Sanjay V.; Gottesfeld, Joel M.; Baratz, Keith H.; Wieben, Eric D. (2015) RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. En: The Journal of Biological Chemistry. Vol. 290; No. 10; pp. 5979-5990; 1083-351X; Disponible en: 10.1074/jbc.M114.621607.
Chung, Doug D.; Frausto, Ricardo F.; Lin, Benjamin R.; Hanser, Evelyn M.; Cohen, Zack; Aldave, Anthony J. (2017) Transcriptomic Profiling of Posterior Polymorphous Corneal Dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 7; pp. 3202-3214; 1552-5783; Disponible en: 10.1167/iovs.17-21423.
Chen, Yinyin; Huang, Kevin; Nakatsu, Martin N.; Xue, Zhigang; Deng, Sophie X.; Fan, Guoping (2013) Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells. En: Human Molecular Genetics. Vol. 22; No. 7; pp. 1271-1279; 1460-2083; Disponible en: 10.1093/hmg/dds527.
Griffith, May; Osborne, Rosemarie; Munger, Rejean; Xiong, Xiaojuan; Doillon, Charles J.; Laycock, Noelani L. C.; Hakim, Malik; Song, Ying; Watsky, Mitchell A. (1999) Functional Human Corneal Equivalents Constructed from Cell Lines. En: Science. Vol. 286; No. 5447; pp. 2169-2172; 0036-8075, 1095-9203; Consultado en: 2018/04/30/22:59:12. Disponible en: http://science.sciencemag.org/content/286/5447/2169. Disponible en: 10.1126/science.286.5447.2169.
Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi; Donev, Rossen (2016) Chapter Six. En: Advances in Protein Chemistry and Structural Biology. Ion channels as therapeutic targets, part B; Vol. 104; pp. 233-261; Academic Press; Consultado en: 2018/04/30/22:55:31. Disponible en: http://www.sciencedirect.com/science/article/pii/S1876162315000954.
Kaczmarek, Leonard K. (2013) Slack, Slick, and Sodium-Activated Potassium Channels. En: International Scholarly Research Notices. Consultado en: 2018/04/30/02:28:23. Disponible en: https://www.hindawi.com/journals/isrn/2013/354262/.
Eghrari, Allen O.; Riazuddin, S. Amer; Gottsch, John D. (2015) Overview of the Cornea: Structure, Function, and Development. En: Progress in Molecular Biology and Translational Science. Vol. 134; pp. 7-23; 1877-1173; Consultado en: 2018/04/16/22:32:47. Disponible en: https://jhu.pure.elsevier.com/en/publications/overview-of-the-cornea-structure-function-and-development-8. Disponible en: 10.1016/bs.pmbts.2015.04.001.
Kaji, Yuichi; Amano, Shiro; Usui, Tomohiko; Oshika, Tetsuro; Yamashiro, Kenji; Ishida, Susumu; Suzuki, Kaori; Tanaka, Sumiyoshi; Adamis, Anthony P.; Nagai, Ryoji; Horiuchi, Seiko (2003) Expression and function of receptors for advanced glycation end products in bovine corneal endothelial cells. En: Investigative Ophthalmology & Visual Science. Vol. 44; No. 2; pp. 521-528; 0146-0404
Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Jeong, Il-Ha; Kim, Hyojun; Kim, Jin Sook (2011) Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy. En: Graefe's Archive for Clinical and Experimental Ophthalmology. Vol. 249; No. 4; pp. 529-536; 0721-832X, 1435-702X; Consultado en: 2018/11/02/15:41:51. Disponible en: http://link.springer.com/10.1007/s00417-010-1573-9. Disponible en: 10.1007/s00417-010-1573-9.
Aldrich, Benjamin T.; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M.; Burckart, Kimberlee A.; Schmidt, Gregory A.; Reed, Cynthia R.; Zimmerman, M. Bridget; Kruse, Friedrich E.; Greiner, Mark A. (2017) Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus. En: Investigative Opthalmology & Visual Science. Vol. 58; No. 4; pp. 2130 1552-5783; Consultado en: 2018/11/02/15:06:59. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-21094. Disponible en: 10.1167/iovs.16-21094.
Chloride channels | Ion channels | IUPHAR/BPS Guide to PHARMACOLOGY. Consultado en: 2018/10/27/04:00:14. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=120.
(2009) Chloride channels. En: British Journal of Pharmacology. Vol. 158; No. Suppl 1; pp. S130-S134; 0007-1188; Consultado en: 2018/10/27/02:52:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884561/. Disponible en: 10.1111/j.1476-5381.2009.00503_6.x.
Stauber, Tobias; Novarino, Gaia; Jentsch, Thomas J.; Alvarez-Leefmans, F. Javier; Delpire, Eric (2010) Chapter 12. En: Physiology and Pathology of Chloride Transporters and Channels in the Nervous System. pp. 209-231; San Diego: Academic Press; 978-0-12-374373-2; Consultado en: 2018/10/27/02:29:02. Disponible en: http://www.sciencedirect.com/science/article/pii/B9780123743732000121.
Storr-Paulsen, Allan; Singh, Amardeep; Jeppesen, Helene; Norregaard, Jens C.; Thulesen, Jesper (2014) Corneal endothelial morphology and central thickness in patients with type II diabetes mellitus. En: Acta Ophthalmologica. Vol. 92; No. 2; pp. 158-160; 1755375X; Consultado en: 2018/10/22/21:33:23. Disponible en: http://doi.wiley.com/10.1111/aos.12064. Disponible en: 10.1111/aos.12064.
Gees, Maarten; Colsoul, Barbara; Nilius, Bernd (2010) The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling. En: Cold Spring Harbor Perspectives in Biology. Vol. 2; No. 10; 1943-0264; Consultado en: 2018/10/18/22:04:51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944357/. Disponible en: 10.1101/cshperspect.a003962.
Mergler, Stefan; Valtink, Monika; Takayoshi, Sumioka; Okada, Yuka; Miyajima, Masayasu; Saika, Shizuya; Reinach, Peter S. (2014) Temperature-Sensitive Transient Receptor Potential Channels in Corneal Tissue Layers and Cells. En: Ophthalmic Research. Vol. 52; No. 3; pp. 151-159; 0030-3747, 1423-0259; Consultado en: 2018/10/18/21:25:33. Disponible en: https://www.karger.com/Article/FullText/365334. Disponible en: 10.1159/000365334.
Zeng, Bo; Chen, Gui-Lan; Garcia-Vaz, Eliana; Bhandari, Sunil; Daskoulidou, Nikoleta; Berglund, Lisa M.; Jiang, Hongni; Hallett, Thomas; Zhou, Lu-Ping; Huang, Li; Xu, Zi-Hao; Nair, Viji; Nelson, Robert G.; Ju, Wenjun; Kretzler, Matthias; Atkin, Stephen L.; Gomez, Maria F.; Xu, Shang-Zhong (2017) ORAI channels are critical for receptor-mediated endocytosis of albumin. En: Nature Communications. Vol. 8; No. 1; pp. 1920 2041-1723; Consultado en: 2018/10/18/21:00:17. Disponible en: https://www.nature.com/articles/s41467-017-02094-y. Disponible en: 10.1038/s41467-017-02094-y.
Mergler, S.; Valtink, M.; Engelmann, K.; Pleyer, U. (2008) New Insights Into Electrophysiology and Functional Transient Receptor Potential (Trp) Channel Expression in the Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 49; No. 13; pp. 3939-3939; 1552-5783; Consultado en: 2018/10/18/19:58:56. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2379333.
Mergler, Stefan; Valtink, Monika; Coulson-Thomas, Vivien Jane; Lindemann, Dirk; Reinach, Peter S.; Engelmann, Katrin; Pleyer, Uwe (2010) TRPV channels mediate temperature-sensing in human corneal endothelial cells. En: Experimental Eye Research. Vol. 90; No. 6; pp. 758-770; 1096-0007; Disponible en: 10.1016/j.exer.2010.03.010.
Torricelli, Andre A. M.; Wilson, Steven E. (2014) Cellular and extracellular matrix modulation of corneal stromal opacity. En: Experimental eye research. Vol. 0; pp. 151-160; 0014-4835; Consultado en: 2018/10/17/02:30:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259857/. Disponible en: 10.1016/j.exer.2014.09.013.
Robbins, Ashlee; Kurose, Masayuki; Winterson, Barbara J.; Meng, Ian D. (2012) Menthol Activation of Corneal Cool Cells Induces TRPM8-Mediated Lacrimation but Not Nociceptive Responses in Rodents. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 11; pp. 7034-7042; 1552-5783; Disponible en: http://dx.doi.org/10.1167/iovs.12-10025. Disponible en: 10.1167/iovs.12-10025.
Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. En: Genome Biology. Vol. 8; No. 9; pp. R183 1465-6906; Consultado en: 2018/09/25/06:30:44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375021/. Disponible en: 10.1186/gb-2007-8-9-r183.
Nygaard, Vegard; Rødland, Einar Andreas; Hovig, Eivind (2016) Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. En: Biostatistics (Oxford, England). Vol. 17; No. 1; pp. 29-39; 1465-4644; Consultado en: 2018/09/25/06:25:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679072/. Disponible en: 10.1093/biostatistics/kxv027.
Iwamoto, Takeo; Devoe, A. Gerard (1971) Electron Microscopic Studies on Fuchs' Combined Dystrophy : I. Posterior Portion of the Cornea. En: Investigative Ophthalmology & Visual Science. Vol. 10; No. 1; pp. 9-28; 1552-5783; Consultado en: 2018/09/25/01:38:10. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2158325.
Patel, Sangita P.; Bourne, William M. (2009) Corneal Endothelial Cell Proliferation: A Function of Cell Density. En: Investigative ophthalmology & visual science. Vol. 50; No. 6; pp. 2742-2746; 0146-0404; Consultado en: 2018/08/28/20:52:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728347/. Disponible en: 10.1167/iovs.08-3002.
Corneal Endothelial Cell Proliferation: A Function of Cell Density. Consultado en: 2018/08/28/20:51:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728347/.
Joyce, Nancy C. (2003) Proliferative capacity of the corneal endothelium. En: Progress in Retinal and Eye Research. Vol. 22; No. 3; pp. 359-389; 1350-9462
Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe (2011) Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal epithelial cells. En: Journal of Cellular Physiology. Vol. 226; No. 7; pp. 1828-1842; 0021-9541; Consultado en: 2018/07/17/02:41:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072442/. Disponible en: 10.1002/jcp.22514.
Reinach, Peter S.; Mergler, Stefan; Okada, Yuka; Saika, Shizuya (2015) Ocular transient receptor potential channel function in health and disease. En: BMC Ophthalmology. Vol. 15; No. 1; pp. 153 1471-2415; Consultado en: 2018/07/16/18:30:34. Disponible en: https://doi.org/10.1186/s12886-015-0135-7. Disponible en: 10.1186/s12886-015-0135-7.
Venkatachalam, Kartik; Montell, Craig (2007) TRP Channels. En: Annual review of biochemistry. Vol. 76; pp. 387-417; 0066-4154; Consultado en: 2018/07/16/16:27:34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196875/. Disponible en: 10.1146/annurev.biochem.75.103004.142819.
TRP Channels | Annual Review of Biochemistry. Consultado en: 2018/07/16/16:25:31. Disponible en: https://www.annualreviews.org/doi/abs/10.1146/annurev.biochem.75.103004.142819?rfr_dat=cr_pub%3Dpubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&journalCode=biochem.
Lopez, Jose J.; Albarran, Letizia; Gómez, Luis J.; Smani, Tarik; Salido, Gines M.; Rosado, Juan A. (2016) Molecular modulators of store-operated calcium entry. En: Biochimica et Biophysica Acta (BBA). Vol. 1863; No. 8; pp. 2037-2043; 0167-4889; Consultado en: 2018/06/06/13:40:06. Disponible en: http://www.sciencedirect.com/science/article/pii/S0167488916301240. Disponible en: 10.1016/j.bbamcr.2016.04.024.
Schmedt, Thore; Silva, Mariana Mazzini; Ziaei, Alireza; Jurkunas, Ula (2012) Molecular Bases of Corneal Endothelial Dystrophies. En: Experimental Eye Research. Vol. 95; No. 1; pp. 24-34; 0014-4835; Consultado en: 2018/06/06/13:01:52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273549/. Disponible en: 10.1016/j.exer.2011.08.002.
Putney, James W.; Steinckwich-Besançon, Natacha; Numaga-Tomita, Takuro; Davis, Felicity M.; Desai, Pooja N.; D’Agostin, Diane M.; Wu, Shilan; Bird, Gary S. (2017) The Functions of Store-operated Calcium Channels. En: Biochimica et biophysica acta. Vol. 1864; No. 6; pp. 900-906; 0006-3002; Consultado en: 2018/06/03/22:55:44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420336/. Disponible en: 10.1016/j.bbamcr.2016.11.028.
Mergler, Stefan; Valtink, Monika; Taetz, Katrin; Sahlmüller, Monika; Fels, Gabriele; Reinach, Peter S.; Engelmann, Katrin; Pleyer, Uwe (2011) Characterization of transient receptor potential vanilloid channel 4 (TRPV4) in human corneal endothelial cells. En: Experimental Eye Research. Vol. 93; No. 5; pp. 710-719; 1096-0007; Disponible en: 10.1016/j.exer.2011.09.021.
Prakriya, Murali; Lewis, Richard S. (2015) Store-Operated Calcium Channels. En: Physiological Reviews. Vol. 95; No. 4; pp. 1383-1436; 0031-9333; Consultado en: 2018/06/03/22:36:14. Disponible en: https://www.physiology.org/doi/abs/10.1152/physrev.00020.2014. Disponible en: 10.1152/physrev.00020.2014.
Hong, Show-Jen; Wu, Kwou-Yeung; Wang, Hwei-Zu; Fong, Jim. C (2003) Change of Cytosolic Ca2+ Mobility in Cultured Bovine Corneal Endothelial Cells by Endothelin-1. En: Journal of Ocular Pharmacology and Therapeutics. Vol. 19; No. 1; pp. 1-9; 1080-7683; Consultado en: 2018/06/03/02:56:10. Disponible en: https://www.liebertpub.com/doi/abs/10.1089/108076803762718060. Disponible en: 10.1089/108076803762718060.
Mergler, Stefan; Dannowski, Haike; Bednarz, Jürgen; Engelmann, Katrin; Hartmann, Christian; Pleyer, Uwe (2003) Calcium influx induced by activation of receptor tyrosine kinases in SV40-transfected human corneal endothelial cells. En: Experimental Eye Research. Vol. 77; No. 4; pp. 485-495; 0014-4835
Harrison, Theresa A.; He, Zhiguo; Boggs, Kristin; Thuret, Gilles; Liu, Hong-Xiang; Defoe, Dennis M. (2016) Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area. En: Molecular Vision. Vol. 22; pp. 31-39; 1090-0535; Consultado en: 2018/06/03/00:10:48. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814271/.
Meeting, Kyoto Cornea Club (1997) Current Opinions in the Kyoto Cornea Club: Proceedings of the First Annual Meeting of the Kyoto Cornea Club, Kyoto, Japan, December 1-2, 1995. pp. 108 : Kugler Publications; 978-90-6299-138-9
Tinggi, Ujang (2008) Selenium: its role as antioxidant in human health. En: Environmental Health and Preventive Medicine. Vol. 13; No. 2; pp. 102-108; 1342-078X, 1347-4715; Consultado en: 2019/02/04/16:53:41. Disponible en: http://link.springer.com/10.1007/s12199-007-0019-4. Disponible en: 10.1007/s12199-007-0019-4.
Bresgen, Nikolaus; Eckl, Peter (2015) Oxidative Stress and the Homeodynamics of Iron Metabolism. En: Biomolecules. Vol. 5; No. 2; pp. 808-847; 2218-273X; Consultado en: 2019/02/04/16:50:26. Disponible en: http://www.mdpi.com/2218-273X/5/2/808. Disponible en: 10.3390/biom5020808.
Glaser, Nicole; Little, Christopher; Lo, Weei; Cohen, Michael; Tancredi, Daniel; Wulff, Heike; O'Donnell, Martha (2017) Treatment with the KCa3.1 inhibitor TRAM-34 during diabetic ketoacidosis reduces inflammatory changes in the brain: TRAM-34 reduces DKA-related brain inflammation. En: Pediatric Diabetes. Vol. 18; No. 5; pp. 356-366; 1399543X; Consultado en: 2019/02/01/17:22:20. Disponible en: http://doi.wiley.com/10.1111/pedi.12396. Disponible en: 10.1111/pedi.12396.
Huang, Chunling; Pollock, Carol A.; Chen, Xin-Ming (2014) Role of the potassium channel KCa3.1 in diabetic nephropathy. En: Clinical Science. Vol. 127; No. 7; pp. 423-433; 0143-5221, 1470-8736; Consultado en: 2019/02/01/17:01:29. Disponible en: http://clinsci.org/lookup/doi/10.1042/CS20140075. Disponible en: 10.1042/CS20140075.
Tandon, A.; Tovey, J. C. K.; Sharma, A.; Gupta, R.; Mohan, R. R. (2010) Role of transforming growth factor Beta in corneal function, biology and pathology. En: Current Molecular Medicine. Vol. 10; No. 6; pp. 565-578; 1875-5666
Kaji, Y. (2005) Prevention of diabetic keratopathy. En: The British Journal of Ophthalmology. Vol. 89; No. 3; pp. 254-255; 0007-1161; Disponible en: 10.1136/bjo.2004.055541.
Thomas, Merlin C.; Brownlee, Michael; Susztak, Katalin; Sharma, Kumar; Jandeleit-Dahm, Karin A. M.; Zoungas, Sophia; Rossing, Peter; Groop, Per-Henrik; Cooper, Mark E. (2015) Diabetic kidney disease. En: Nature Reviews Disease Primers. pp. 15018 2056-676X; Consultado en: 2019/02/01/15:47:16. Disponible en: http://www.nature.com/articles/nrdp201518. Disponible en: 10.1038/nrdp.2015.18.
Yan, Liang-Jun (2018) Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. En: Animal Models and Experimental Medicine. Vol. 1; No. 1; pp. 7-13; 2576-2095; Disponible en: 10.1002/ame2.12001.
Forbes, Josephine M.; Cooper, Mark E. (2013) Mechanisms of diabetic complications. En: Physiological Reviews. Vol. 93; No. 1; pp. 137-188; 1522-1210; Disponible en: 10.1152/physrev.00045.2011.
Goyer, Benjamin; Thériault, Mathieu; Gendron, Sébastien P.; Brunette, Isabelle; Rochette, Patrick J.; Proulx, Stéphanie (2018) Extracellular Matrix and Integrin Expression Profiles in Fuchs Endothelial Corneal Dystrophy Cells and Tissue Model. En: Tissue Engineering. Part A. Vol. 24; No. 7-8; pp. 607-615; 1937-335X; Disponible en: 10.1089/ten.TEA.2017.0128.
Okumura, Naoki; Minamiyama, Ryuki; Ho, Leona Ty; Kay, EunDuck P.; Kawasaki, Satoshi; Tourtas, Theofilos; Schlötzer-Schrehardt, Ursula; Kruse, Friedrich E.; Young, Robert D.; Quantock, Andrew J.; Kinoshita, Shigeru; Koizumi, Noriko (2015) Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. En: Laboratory Investigation; a Journal of Technical Methods and Pathology. Vol. 95; No. 11; pp. 1291-1304; 1530-0307; Disponible en: 10.1038/labinvest.2015.111.
Cui, Zekai; Zeng, Qiaolang; Guo, Yonglong; Liu, Shiwei; Wang, Peiyuan; Xie, Mengyuan; Chen, Jiansu; Krahe, Ralf (2018) Pathological molecular mechanism of symptomatic late-onset Fuchs endothelial corneal dystrophy by bioinformatic analysis. En: PLOS ONE. Vol. 13; No. 5; pp. e0197750 1932-6203; Consultado en: 2019/02/01/04:18:13. Disponible en: http://dx.plos.org/10.1371/journal.pone.0197750. Disponible en: 10.1371/journal.pone.0197750.
Meekins, Landon C.; Rosado-Adames, Noel; Maddala, Rupalatha; Zhao, Jiagang J.; Rao, Ponugoti V.; Afshari, Natalie A. (2016) Corneal Endothelial Cell Migration and Proliferation Enhanced by Rho Kinase (ROCK) Inhibitors in In Vitro and In Vivo Models. En: Investigative Opthalmology & Visual Science. Vol. 57; No. 15; pp. 6731 1552-5783; Consultado en: 2019/02/01/04:03:47. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-20414. Disponible en: 10.1167/iovs.16-20414.
Soh, Yu Qiang; Peh, Gary; George, Benjamin Lawrence; Seah, Xin Yi; Primalani, Nishal Kishinchand; Adnan, Khadijah; Mehta, Jodhbir Singh (2016) Predicative Factors for Corneal Endothelial Cell Migration. En: Investigative Opthalmology & Visual Science. Vol. 57; No. 2; pp. 338 1552-5783; Consultado en: 2019/02/01/00:13:38. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.15-18300. Disponible en: 10.1167/iovs.15-18300.
Li, Shimin; Kim, Edward; Bonanno, Joseph A. (2016) Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux. En: American Journal of Physiology-Cell Physiology. Vol. 311; No. 1; pp. C116-C126; 0363-6143, 1522-1563; Consultado en: 2019/01/31/23:49:04. Disponible en: http://www.physiology.org/doi/10.1152/ajpcell.00095.2016. Disponible en: 10.1152/ajpcell.00095.2016.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H + Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Opthalmology & Visual Science. Vol. 53; No. 4; pp. 2020 1552-5783; Consultado en: 2019/01/31/23:43:55. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.12-9475. Disponible en: 10.1167/iovs.12-9475.
Gabelt, B'Ann True; Paul L. Kaufman; Production and Flow of Aqueous Humor. En: Adler's Physiology of the Eye.: W B Saunders Company; 978-0-323-05714-1 978-0-323-08116-0
Riordan-Eva, Paul; Riordan-Eva, Paul; Augsburger, James J. (2017) Anatomy & Embryology of the Eye. En: Vaughan & Asbury's General Ophthalmology, 19e. No. Book, Section; New York, NY: McGraw-Hill Education; Consultado en: 2019/01/30/. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1144466589.
Doutch, James J.; Quantock, Andrew J.; Joyce, Nancy C.; Meek, Keith M. (2012) Ultraviolet Light Transmission through the Human Corneal Stroma Is Reduced in the Periphery. En: Biophysical Journal. Vol. 102; No. 6; pp. 1258-1264; 00063495; Consultado en: 2019/01/30/17:36:55. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0006349512002263. Disponible en: 10.1016/j.bpj.2012.02.023.
Shih, K. Co; Lam, K. S.-L.; Tong, L. (2017) A systematic review on the impact of diabetes mellitus on the ocular surface. En: Nutrition & Diabetes. Vol. 7; No. 3; pp. e251 2044-4052; Disponible en: 10.1038/nutd.2017.4.
A systematic review on the impact of diabetes mellitus on the ocular surface | Nutrition & Diabetes. Consultado en: 2019/01/27/23:42:54. Disponible en: https://www.nature.com/articles/nutd20174.
Diabetes. Consultado en: 2019/01/27/23:04:50. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/diabetes.
Deleterious impact of hyperglycemia on cystic fibrosis airway ion transport and epithelial repair. Consultado en: 2019/01/10/01:22:33. Disponible en: https://www.sciencedirect.com/science/article/pii/S1569199315001022.
Huang, Chunling; Pollock, Carol A.; Chen, Xin-Ming (2014) High Glucose Induces CCL20 in Proximal Tubular Cells via Activation of the KCa3.1 Channel. En: PLOS ONE. Vol. 9; No. 4; pp. e95173 1932-6203; Consultado en: 2019/01/10/01:22:04. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095173. Disponible en: 10.1371/journal.pone.0095173.
Huang, Xi; Jan, Lily Yeh (2014) Targeting potassium channels in cancer. En: The Journal of Cell Biology. Vol. 206; No. 2; pp. 151-162; 1540-8140; Disponible en: 10.1083/jcb.201404136.
Shao, Zhifei; Makinde, Toluwalope O.; Agrawal, Devendra K. (2011) Calcium-Activated Potassium Channel KCa3.1 in Lung Dendritic Cell Migration. En: American Journal of Respiratory Cell and Molecular Biology. Vol. 45; No. 5; pp. 962-968; 1044-1549; Consultado en: 2019/01/10/01:17:33. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262686/. Disponible en: 10.1165/rcmb.2010-0514OC.
Suarez, Jorge; Hu, Yong; Makino, Ayako; Fricovsky, Eduardo; Wang, Hong; Dillmann, Wolfgang H. (2008) Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. En: American Journal of Physiology-Cell Physiology. Vol. 295; No. 6; pp. C1561-C1568; 0363-6143; Consultado en: 2018/12/14/09:47:18. Disponible en: https://www.physiology.org/doi/full/10.1152/ajpcell.00076.2008. Disponible en: 10.1152/ajpcell.00076.2008.
Lu, Luo (2006) Stress-induced corneal epithelial apoptosis mediated by K+ channel activation. En: Progress in Retinal and Eye Research. Vol. 25; No. 6; pp. 515-538; 1350-9462; Disponible en: 10.1016/j.preteyeres.2006.07.004.
Kernt, Marcus; Hirneiss, C.; Neubauer, A. S.; Kampik, A. (2010) Minocycline is cytoprotective in human corneal endothelial cells and induces anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis (XIAP). En: The British Journal of Ophthalmology. Vol. 94; No. 7; pp. 940-946; 1468-2079; Disponible en: 10.1136/bjo.2009.165092.
Brownlee, Michael (2005) The pathobiology of diabetic complications: a unifying mechanism. En: Diabetes. Vol. 54; No. 6; pp. 1615-1625; 0012-1797
Ichim, Gabriel; Lopez, Jonathan; Ahmed, Shafiq U.; Muthalagu, Nathiya; Giampazolias, Evangelos; Delgado, M. Eugenia; Haller, Martina; Riley, Joel S.; Mason, Susan M.; Athineos, Dimitris; Parsons, Melissa J.; van de Kooij, Bert; Bouchier-Hayes, Lisa; Chalmers, Anthony J.; Rooswinkel, Rogier W.; Oberst, Andrew; Blyth, Karen; Rehm, Markus; Murphy, Daniel J.; Tait, Stephen W.G. (2015) Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death. En: Molecular Cell. Vol. 57; No. 5; pp. 860-872; 10972765; Consultado en: 2018/11/26/14:33:48. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1097276515000192. Disponible en: 10.1016/j.molcel.2015.01.018.
Cho, Dong-Hyung; Nakamura, Tomohiro; Fang, Jianguo; Cieplak, Piotr; Godzik, Adam; Gu, Zezong; Lipton, Stuart A. (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. En: Science (New York, N.Y.). Vol. 324; No. 5923; pp. 102-105; 1095-9203; Disponible en: 10.1126/science.1171091.
Vanden Berghe, T.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C. J.; Brunk, U. T.; Declercq, W.; Vandenabeele, P. (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. En: Cell Death and Differentiation. Vol. 17; No. 6; pp. 922-930; 1476-5403; Disponible en: 10.1038/cdd.2009.184.
Marchitti, Satori A; Chen, Ying; Thompson, David C; Vasiliou, Vasilis (2011) Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes:. En: Eye & Contact Lens: Science & Clinical Practice. Vol. 37; No. 4; pp. 206-213; 1542-2321; Consultado en: 2018/11/15/13:11:40. Disponible en: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00140068-201107000-00007. Disponible en: 10.1097/ICL.0b013e3182212642.
Nita, Małgorzata; Grzybowski, Andrzej (2016) The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. En: Oxidative Medicine and Cellular Longevity. Vol. 2016; pp. 1-23; 1942-0900, 1942-0994; Consultado en: 2018/11/15/12:57:37. Disponible en: http://www.hindawi.com/journals/omcl/2016/3164734/. Disponible en: 10.1155/2016/3164734.
Zhu, Cheng; Joyce, Nancy C. (2004) Proliferative response of corneal endothelial cells from young and older donors. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 6; pp. 1743-1751; 0146-0404
Senoo, T.; Joyce, N. C. (2000) Cell cycle kinetics in corneal endothelium from old and young donors. En: Investigative Ophthalmology & Visual Science. Vol. 41; No. 3; pp. 660-667; 0146-0404
Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Constantinos (2009) 8-hydroxy-2'-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. En: Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews. Vol. 27; No. 2; pp. 120-139; 1532-4095; Disponible en: 10.1080/10590500902885684.
Joyce, Nancy C.; Zhu, Cheng C.; Harris, Deshea L. (2009) Relationship among Oxidative Stress, DNA Damage, and Proliferative Capacity in Human Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 5; pp. 2116-2122; 1552-5783; Consultado en: 2018/11/15/04:08:10. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2126584. Disponible en: 10.1167/iovs.08-3007.
Kaczmarek, Leonard K. (2013) Slack, Slick, and Sodium-Activated Potassium Channels. En: International Scholarly Research Notices. Consultado en: 2018/11/05/04:27:01. Disponible en: https://www.hindawi.com/journals/isrn/2013/354262/.
Paulais, Marc; Lachheb, Sahran; Teulon, Jacques (2006) A Na+-and Cl−-activated K+ Channel in the Thick Ascending Limb of Mouse Kidney. En: The Journal of General Physiology. Vol. 127; No. 2; pp. 205-215; 0022-1295, 1540-7748; Consultado en: 2018/11/05/04:22:14. Disponible en: http://jgp.rupress.org/content/127/2/205. Disponible en: 10.1085/jgp.200509360.
Hayashi, Mikio; Wang, Jing; Hede, Susanne E.; Novak, Ivana (2012) An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. En: American Journal of Physiology. Cell Physiology. Vol. 303; No. 2; pp. C151-159; 1522-1563; Disponible en: 10.1152/ajpcell.00089.2012.
Hipfner, David R.; Cohen, Stephen M. (2003) The Drosophila sterile-20 kinase slik controls cell proliferation and apoptosis during imaginal disc development. En: PLoS biology. Vol. 1; No. 2; pp. E35 1545-7885; Disponible en: 10.1371/journal.pbio.0000035.
Dolga, A M; Terpolilli, N; Kepura, F; Nijholt, I M; Knaus, H-G; D'Orsi, B; Prehn, J H M; Eisel, U L M; Plant, T; Plesnila, N; Culmsee, C (2011) KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. En: Cell Death & Disease. Vol. 2; No. 4; pp. e147 2041-4889; Consultado en: 2018/11/05/03:17:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3122061/. Disponible en: 10.1038/cddis.2011.30.
Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M.; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto (2013) Laminar shear stress upregulates endothelial Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 via a Ca²⁺/calmodulin-dependent protein kinase kinase/Akt/p300 cascade. En: American Journal of Physiology. Heart and Circulatory Physiology. Vol. 305; No. 4; pp. H484-493; 1522-1539; Disponible en: 10.1152/ajpheart.00642.2012.
Tajhya, Rajeev B.; Hu, Xueyou; Tanner, Mark R.; Huq, Redwan; Kongchan, Natee; Neilson, Joel R.; Rodney, George G.; Horrigan, Frank T.; Timchenko, Lubov T.; Beeton, Christine (2016) Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts. En: Cell Death & Disease. Vol. 7; No. 10; pp. e2426 2041-4889; Disponible en: 10.1038/cddis.2016.324.
Potier, M; Chantome, A; Joulin, V; Girault, A; Roger, S; Besson, P; Jourdan, M-L; LeGuennec, J-Y; Bougnoux, P; Vandier, C (2011) The SK3/KCa2.3 potassium channel is a new cellular target for edelfosine. En: British Journal of Pharmacology. Vol. 162; No. 2; pp. 464-479; 0007-1188; Consultado en: 2018/11/05/02:33:22. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031066/. Disponible en: 10.1111/j.1476-5381.2010.01044.x.
Schwab, Albrecht; Fabian, Anke; Hanley, Peter J.; Stock, Christian (2012) Role of Ion Channels and Transporters in Cell Migration. En: Physiological Reviews. Vol. 92; No. 4; pp. 1865-1913; 0031-9333; Consultado en: 2018/11/04/22:04:35. Disponible en: https://www.physiology.org/doi/full/10.1152/physrev.00018.2011. Disponible en: 10.1152/physrev.00018.2011.
Ouadid-Ahidouch, Halima; Ahidouch, Ahmed (2013) K+ channels and cell cycle progression in tumor cells. En: Frontiers in Physiology. Vol. 4; 1664-042X; Consultado en: 2018/11/04/21:48:41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747328/. Disponible en: 10.3389/fphys.2013.00220.
Santi, Celia M.; Butler, Alice; Kuhn, Julia; Wei, Aguan; Salkoff, Lawrence (2009) Bovine and Mouse SLO3 K+ Channels. En: The Journal of Biological Chemistry. Vol. 284; No. 32; pp. 21589-21598; 0021-9258; Consultado en: 2018/11/04/17:56:39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755883/. Disponible en: 10.1074/jbc.M109.015040.
Song, Penghong; Du, Yehui; Song, Wenfeng; Chen, Hao; Xuan, Zefeng; Zhao, Long; Chen, Jun; Chen, Jian; Guo, Danjing; Jin, Cheng; Zhao, Yongchao; Tuo, Biguang; Zheng, Shusen (2017) KCa3.1 as an Effective Target for Inhibition of Growth and Progression of Intrahepatic Cholangiocarcinoma. En: Journal of Cancer. Vol. 8; No. 9; pp. 1568-1578; 1837-9664; Consultado en: 2018/11/04/17:46:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535712/. Disponible en: 10.7150/jca.18697.
Jackson, William F. (2010) KV1.3: A new therapeutic target to control vascular smooth muscle cell proliferation. En: Arteriosclerosis, thrombosis, and vascular biology. Vol. 30; No. 6; pp. 1073-1074; 1079-5642; Consultado en: 2018/11/04/05:42:24. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891047/. Disponible en: 10.1161/ATVBAHA.110.206565.
Vandorpe, D. H.; Shmukler, B. E.; Jiang, L.; Lim, B.; Maylie, J.; Adelman, J. P.; de Franceschi, L.; Cappellini, M. D.; Brugnara, C.; Alper, S. L. (1998) cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. En: The Journal of Biological Chemistry. Vol. 273; No. 34; pp. 21542-21553; 0021-9258
Chandy, K. George; Wulff, Heike; Beeton, Christine; Pennington, Michael; Gutman, George A.; Cahalan, Michael D. (2004) K+ channels as targets for specific immunomodulation. En: Trends in Pharmacological Sciences. Vol. 25; No. 5; pp. 280-289; 0165-6147; Disponible en: 10.1016/j.tips.2004.03.010.
Wei, Aguan D.; Gutman, George A.; Aldrich, Richard; Chandy, K. George; Grissmer, Stephan; Wulff, Heike (2005) International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels. En: Pharmacological Reviews. Vol. 57; No. 4; pp. 463-472; 0031-6997, 1521-0081; Consultado en: 2018/11/04/03:53:18. Disponible en: http://pharmrev.aspetjournals.org/content/57/4/463. Disponible en: 10.1124/pr.57.4.9.
International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels | Pharmacological Reviews. Consultado en: 2018/11/04/03:17:27. Disponible en: http://pharmrev.aspetjournals.org/content/57/4/463.
Ha, Tal Soo; Heo, Moon-Sun; Park, Chul-Seung (2004) Functional Effects of Auxiliary β4-Subunit on Rat Large-Conductance Ca2+-Activated K+ Channel. En: Biophysical Journal. Vol. 86; No. 5; pp. 2871-2882; 0006-3495; Consultado en: 2018/11/04/03:04:15. Disponible en: http://www.sciencedirect.com/science/article/pii/S0006349504743398. Disponible en: 10.1016/S0006-3495(04)74339-8.
Guéguinou, Maxime; Chantôme, Aurélie; Fromont, Gaëlle; Bougnoux, Philippe; Vandier, Christophe; Potier-Cartereau, Marie (2014) KCa and Ca2+ channels: The complex thought. En: Biochimica et Biophysica Acta (BBA). Calcium Signaling in Health and Disease; Vol. 1843; No. 10; pp. 2322-2333; 0167-4889; Consultado en: 2018/11/03/22:56:19. Disponible en: http://www.sciencedirect.com/science/article/pii/S0167488914000834. Disponible en: 10.1016/j.bbamcr.2014.02.019.
Mobasseri, Majid; Shirmohammadi, Masoud; Amiri, Tarlan; Vahed, Nafiseh; Hosseini Fard, Hossein; Ghojazadeh, Morteza (2020) Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. En: Health Promotion Perspectives. Vol. 10; No. 2; pp. 98-115; 2228-6497; Consultado en: 2020/08/17/12:24:10. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146037/. Disponible en: 10.34172/hpp.2020.18.
Lindner, L. M. E.; Rathmann, W.; Rosenbauer, J. (2018) Inequalities in glycaemic control, hypoglycaemia and diabetic ketoacidosis according to socio-economic status and area-level deprivation in Type 1 diabetes mellitus: a systematic review. En: Diabetic Medicine. Vol. 35; No. 1; pp. 12-32; 1464-5491; Consultado en: 2020/08/17/13:14:29. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/dme.13519. Disponible en: 10.1111/dme.13519.
Pandova, Maya Georgieva (2019) Diabetic Retinopathy and Blindness: An Epidemiological Overview. En: Visual Impairment and Blindness. Consultado en: 2020/08/17/13:17:43. Disponible en: https://www.intechopen.com/online-first/diabetic-retinopathy-and-blindness-an-epidemiological-overview. Disponible en: 10.5772/intechopen.88756.
Fang, Michael; Echouffo-Tcheugui, Justin B.; Selvin, Elizabeth (2020) Burden of Complications in U.S. Adults With Young-Onset Type 2 or Type 1 Diabetes. En: Diabetes Care. Vol. 43; No. 4; pp. e47-e49; 0149-5992, 1935-5548; Consultado en: 2020/08/17/14:00:48. Disponible en: https://care.diabetesjournals.org/content/43/4/e47. Disponible en: 10.2337/dc19-2394.
Jeganathan, V. Swetha E.; Wang, Jie Jin; Wong, Tien Yin (2008) Ocular Associations of Diabetes Other Than Diabetic Retinopathy. En: Diabetes Care. Vol. 31; No. 9; pp. 1905-1912; 0149-5992; Consultado en: 2020/08/17/14:39:16. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518369/. Disponible en: 10.2337/dc08-0342.
Tuft, S. J.; Coster, D. J. (1990) The corneal endothelium. En: Eye. Vol. 4; No. 3; pp. 389-424; 1476-5454; Consultado en: 2020/08/19/23:08:22. Disponible en: https://www.nature.com/articles/eye199053. Disponible en: 10.1038/eye.1990.53.
Cochrane Handbook for Systematic Reviews of Interventions. Consultado en: 2020/09/08/17:55:35. Disponible en: /handbook/current.
Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico (2014) MaxiK channel and cell signalling. En: Pflugers Archiv : European journal of physiology. Vol. 466; No. 5; pp. 875-886; 0031-6768; Consultado en: 2020/09/18/10:21:15. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969412/. Disponible en: 10.1007/s00424-013-1359-0.
Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Higa, Kazunari; Suzuki, Terumasa; Aketa, Naohiko; Dogru, Murat; Satake, Yoshiyuki; Shimazaki, Jun (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. En: Scientific Reports. Vol. 7; No. 1; pp. 13603 2045-2322; Consultado en: 2020/09/18/10:44:14. Disponible en: https://www.nature.com/articles/s41598-017-14131-3. Disponible en: 10.1038/s41598-017-14131-3.
Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Higa, Kazunari; Suzuki, Terumasa; Aketa, Naohiko; Dogru, Murat; Satake, Yoshiyuki; Shimazaki, Jun (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. En: Scientific Reports. Vol. 7; No. 1; pp. 13603 2045-2322; Consultado en: 2020/09/18/10:46:25. Disponible en: https://www.nature.com/articles/s41598-017-14131-3. Disponible en: 10.1038/s41598-017-14131-3.
Lass, Jonathan H.; Beck, Roy W.; Benetz, Beth Ann; Dontchev, Mariya; Gal, Robin L.; Holland, Edward J.; Kollman, Craig; Mannis, Mark J.; Price, Francis; Raber, Irving; Stark, Walter; Stulting, R. Doyle; Sugar, Alan; Group, for the Cornea Donor Study Investigator (2011) Baseline Factors Related to Endothelial Cell Loss Following Penetrating Keratoplasty. En: Archives of Ophthalmology. Vol. 129; No. 9; pp. 1149-1154; 0003-9950; Consultado en: 2020/09/18/10:52:03. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/1106439. Disponible en: 10.1001/archophthalmol.2011.102.
Feizi, Sepehr (2018) Corneal endothelial cell dysfunction: etiologies and management. En: Therapeutic Advances in Ophthalmology. Vol. 10; 2515-8414; Consultado en: 2020/09/18/12:54:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293368/. Disponible en: 10.1177/2515841418815802.
Singh, Harpreet; Stefani, Enrico; Toro, Ligia (2012) Intracellular BKCa (iBKCa) channels. En: The Journal of Physiology. Vol. 590; No. 23; pp. 5937-5947; 1469-7793; Consultado en: 2020/09/18/23:30:55. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2011.215533. Disponible en: 10.1113/jphysiol.2011.215533.
Yan, Jiusheng; Aldrich, Richard W. (2012) BK potassium channel modulation by leucine-rich repeat-containing proteins. En: Proceedings of the National Academy of Sciences. Vol. 109; No. 20; pp. 7917-7922; 0027-8424, 1091-6490; Consultado en: 2020/10/29/17:29:52. Disponible en: https://www.pnas.org/content/109/20/7917. Disponible en: 10.1073/pnas.1205435109.
Skyler, Jay S.; Bakris, George L.; Bonifacio, Ezio; Darsow, Tamara; Eckel, Robert H.; Groop, Leif; Groop, Per-Henrik; Handelsman, Yehuda; Insel, Richard A.; Mathieu, Chantal; McElvaine, Allison T.; Palmer, Jerry P.; Pugliese, Alberto; Schatz, Desmond A.; Sosenko, Jay M.; Wilding, John P. H.; Ratner, Robert E. (2017) Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. En: Diabetes. Vol. 66; No. 2; pp. 241-255; 0012-1797, 1939-327X; Consultado en: 2020/12/06/16:44:25. Disponible en: https://diabetes.diabetesjournals.org/content/66/2/241. Disponible en: 10.2337/db16-0806.
Hatou, Shin; Yamada, Masakazu; Akune, Yoko; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo; Tsubota, Kazuo (2010) Role of Insulin in Regulation of Na+-/K+-Dependent ATPase Activity and Pump Function in Corneal Endothelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 51; No. 8; pp. 3935-3942; 1552-5783; Consultado en: 2020/12/06/23:52:28. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2126373. Disponible en: 10.1167/iovs.09-4027.
Cernea, Simona; Dobreanu, Minodora (2013) Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. En: Biochemia Medica. Vol. 23; No. 3; pp. 266-280; 1330-0962; Disponible en: 10.11613/bm.2013.033.
McCarey, Bernard E.; Edelhauser, Henry F.; Lynn, Michael J. (2008) Review of Corneal Endothelial Specular Microscopy for FDA Clinical Trials of Refractive Procedures, Surgical Devices and New Intraocular Drugs and Solutions. En: Cornea. Vol. 27; No. 1; pp. 1-16; 0277-3740; Consultado en: 2020/12/11/01:30:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062434/. Disponible en: 10.1097/ICO.0b013e31815892da.
Van den Bogerd, Bert; Dhubhghaill, Sorcha Ní; Koppen, Carina; Tassignon, Marie-José; Zakaria, Nadia (2018) A review of the evidence for in vivo corneal endothelial regeneration. En: Survey of Ophthalmology. Vol. 63; No. 2; pp. 149-165; 0039-6257; Consultado en: 2020/12/14/16:17:25. Disponible en: http://www.sciencedirect.com/science/article/pii/S0039625717301054. Disponible en: 10.1016/j.survophthal.2017.07.004.
Powers, Alvin C.; Niswender, Kevin D.; Evans-Molina, Carmella; Jameson, J. Larry; Fauci, Anthony S.; Kasper, Dennis L.; Hauser, Stephen L.; Longo, Dan L.; Loscalzo, Joseph (2018) Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. En: Harrison's Principles of Internal Medicine. New York, NY: McGraw-Hill Education; Consultado en: 2020/12/14/17:13:54. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1156520865.
Roszkowska, A. M.; Tringali, C. G.; Colosi, P.; Squeri, C. A.; Ferreri, G. (1999) Corneal endothelium evaluation in type I and type II diabetes mellitus. En: Ophthalmologica. Journal International D'ophtalmologie. International Journal of Ophthalmology. Zeitschrift Fur Augenheilkunde. Vol. 213; No. 4; pp. 258-261; 0030-3755; Disponible en: 10.1159/000027431.
Goldstein, Andrew S.; Janson, Ben J.; Skeie, Jessica M.; Ling, Jennifer J.; Greiner, Mark A. (2020) The effects of diabetes mellitus on the corneal endothelium: A review. En: Survey of Ophthalmology. Vol. 65; No. 4; pp. 438-450; 1879-3304; Disponible en: 10.1016/j.survophthal.2019.12.009.
Lin, Hung-Yu; Weng, Shao-Wen; Chang, Yen-Hsiang; Su, Yu-Jih; Chang, Chih-Min; Tsai, Chia-Jen; Shen, Feng-Chih; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Lin, Ching-Yi; Wang, Pei-Wen (2018) The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species. En: Oxidative Medicine and Cellular Longevity. Consultado en: 2020/12/16/00:07:04. Disponible en: https://www.hindawi.com/journals/omcl/2018/7514383/.
Ottawa Hospital Research Institute. Consultado en: 2021/01/28/13:37:00. Disponible en: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
American Diabetes Association (2020) Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2020. En: Diabetes Care. Vol. 43; No. Supplement 1; pp. S98-S110; 0149-5992, 1935-5548; Consultado en: 2021/02/10/18:34:20. Disponible en: https://care.diabetesjournals.org/content/43/Supplement_1/S98. Disponible en: 10.2337/dc20-S009.
Roo, An-Katrien De; Wouters, Jasper; Govaere, Olivier; Foets, Beatrijs; Oord, Joost J. van den (2017) Identification of Circulating Fibrocytes and Dendritic Derivatives in Corneal Endothelium of Patients With Fuchs' Dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 1; pp. 670-681; 1552-5783; Consultado en: 2021/02/12/16:01:13. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2600835. Disponible en: 10.1167/iovs.16-20880.
Anbar, Mohamed; Ammar, Hatem; Mahmoud, Ramadan A. (2016) Corneal Endothelial Morphology in Children with Type 1 Diabetes. En: Journal of Diabetes Research. Vol. 2016; 2314-6745; Consultado en: 2021/02/17/19:59:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939174/. Disponible en: 10.1155/2016/7319047.
Calvo-Maroto, Ana M.; Cerviño, Alejandro; Perez-Cambrodí, Rafael J.; García-Lázaro, Santiago; Sanchis-Gimeno, Juan A. (2015) Quantitative corneal anatomy: evaluation of the effect of diabetes duration on the endothelial cell density and corneal thickness. En: Ophthalmic and Physiological Optics. Vol. 35; No. 3; pp. 293-298; 1475-1313; Consultado en: 2021/02/17/21:06:50. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/opo.12191. Disponible en: https://doi.org/10.1111/opo.12191.
Cankurtaran, Veysel; Tekin, Kemal (2019) Cumulative Effects of Smoking and Diabetes Mellitus on Corneal Endothelial Cell Parameters. En: Cornea. Vol. 38; No. 1; pp. 78-83; 1536-4798; Disponible en: 10.1097/ICO.0000000000001718.
Changes in Choroidal Thickness and Corneal Parameters in Diabetic Eyes. Consultado en: 2021/02/17/21:47:35. Disponible en: https://journals.sagepub.com/doi/abs/10.5301/ejo.5000677.
Baker, Peter; Fain, Pam; Kahles, Heinrich; Yu, Liping; Hutton, John; Wenzlau, Janet; Rewers, Marian; Badenhoop, Klaus; Eisenbarth, George (2012) Genetic Determinants of 21-Hydroxylase Autoantibodies Amongst Patients of the Type 1 Diabetes Genetics Consortium. En: The Journal of Clinical Endocrinology & Metabolism. Vol. 97; No. 8; pp. E1573-E1578; 0021-972X; Consultado en: 2021/02/19/15:37:51. Disponible en: https://doi.org/10.1210/jc.2011-2824. Disponible en: 10.1210/jc.2011-2824.
Morran, Michael P.; Vonberg, Andrew; Khadra, Anmar; Pietropaolo, Massimo (2015) Immunogenetics of Type 1 Diabetes Mellitus. En: Molecular aspects of medicine. Vol. 42; pp. 42-60; 0098-2997; Consultado en: 2021/02/19/18:08:27. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548800/. Disponible en: 10.1016/j.mam.2014.12.004.
Iwata, M.; Kiritoshi, A.; Roat, M. I.; Yagihashi, A.; Thoft, R. A. (1992) Regulation of HLA class II antigen expression on cultured corneal epithelium by interferon-gamma. En: Investigative Ophthalmology & Visual Science. Vol. 33; No. 9; pp. 2714-2721; 0146-0404
Donnelly, J. J.; Li, W. Y.; Rockey, J. H.; Prendergast, R. A. (1985) Induction of class II (Ia) alloantigen expression on corneal endothelium in vivo and in vitro. En: Investigative Ophthalmology & Visual Science. Vol. 26; No. 4; pp. 575-580; 1552-5783; Consultado en: 2021/02/19/21:13:20. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2177064.
Young, E.; Stark, W. J.; Prendergast, R. A. (1985) Immunology of corneal allograft rejection: HLA-DR antigens on human corneal cells. En: Investigative Ophthalmology & Visual Science. Vol. 26; No. 4; pp. 571-574; 1552-5783; Consultado en: 2021/02/19/21:19:07. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2177105.
Zhang, Jie; McGhee, Charles N. J.; Patel, Dipika V. (2019) The Molecular Basis of Fuchs’ Endothelial Corneal Dystrophy. En: Molecular Diagnosis & Therapy. Vol. 23; No. 1; pp. 97-112; 1179-2000; Consultado en: 2021/02/19/21:22:54. Disponible en: https://doi.org/10.1007/s40291-018-0379-z. Disponible en: 10.1007/s40291-018-0379-z.
Treseler, P. A.; Foulks, G. N.; Sanfilippo, F. (1984) The expression of HLA antigens by cells in the human cornea. En: American Journal of Ophthalmology. Vol. 98; No. 6; pp. 763-772; 0002-9394; Disponible en: 10.1016/0002-9394(84)90696-2.
Crotti, Chiara; Selmi, Carlo; Shoenfeld, Yehuda; Meroni, Pier Luigi; Gershwin, M. Eric (2014) Chapter 46. En: Autoantibodies (Third Edition). pp. 385-389; San Diego: Elsevier; 978-0-444-56378-1; Consultado en: 2021/02/19/22:57:55. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780444563781000460.
Lahdou, Imad; Engler, Christoph; Mehrle, Stefan; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Terness, Peter (2014) Role of Human Corneal Endothelial Cells in T-Cell–Mediated Alloimmune Attack In Vitro. En: Investigative Ophthalmology & Visual Science. Vol. 55; No. 3; pp. 1213-1221; 1552-5783; Consultado en: 2021/02/20/01:15:36. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2189465. Disponible en: 10.1167/iovs.13-11930.
Whikehart (1995) The inhibition of sodium, potassium-stimulated ATPase and corneal swelling: the role played by polyols. En: Journal of the American Optometric Association. Vol. 66; No. 6; pp. 331-333; 0003-0244; Consultado en: 2021/02/20/02:01:22. Disponible en: https://europepmc.org/article/med/7673590.
Busted, N; Olsen, T; Schmitz, O (1981) Clinical observations on the corneal thickness and the corneal endothelium in diabetes mellitus. En: The British Journal of Ophthalmology. Vol. 65; No. 10; pp. 687-690; 0007-1161; Consultado en: 2021/02/20/02:10:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1039638/.
Zhang, Kaikai; Zhao, Liangliang; Zhu, Chao; Nan, Weijin; Ding, Xinfen; Dong, Yuchen; Zhao, Meisheng (2021) The effect of diabetes on corneal endothelium: a meta-analysis. En: BMC Ophthalmology. Vol. 21; No. 1; pp. 78 1471-2415; Consultado en: 2021/02/20/02:31:55. Disponible en: https://doi.org/10.1186/s12886-020-01785-3. Disponible en: 10.1186/s12886-020-01785-3.
Differences in corneal thickness and corneal endothelium related to duration in Diabetes | Eye. Consultado en: 2021/02/27/23:25:31. Disponible en: https://www.nature.com/articles/6701868.
Lee, J. S.; Oum, B. S.; Choi, H. Y.; Lee, J. E.; Cho, B. M. (2006) Differences in corneal thickness and corneal endothelium related to duration in diabetes. En: Eye (London, England). Vol. 20; No. 3; pp. 315-318; 0950-222X; Disponible en: 10.1038/sj.eye.6701868.
Tk, Yoo; E, Oh (2019) Diabetes mellitus is associated with dry eye syndrome: a meta-analysis. En: International Ophthalmology. Vol. 39; No. 11; pp. 2611-2620; 0165-5701, 1573-2630; Consultado en: 2021/03/01/19:32:48. Disponible en: https://europepmc.org/article/med/31065905. Disponible en: 10.1007/s10792-019-01110-y.
Stuard, Whitney L.; Titone, Rossella; Robertson, Danielle M. (2017) Tear Levels of Insulin-Like Growth Factor Binding Protein 3 Correlate With Subbasal Nerve Plexus Changes in Patients With Type 2 Diabetes Mellitus. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 14; pp. 6105-6112; 1552-5783; Consultado en: 2021/03/01/19:40:54. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2665837. Disponible en: 10.1167/iovs.17-22425.
Wu, Yu-Chieh; Buckner, Benjamin R.; Zhu, Meifang; Cavanagh, H. Dwight; Robertson, Danielle M. (2012) Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium. En: The Ocular Surface. Vol. 10; No. 2; pp. 100-107; 1542-0124; Disponible en: 10.1016/j.jtos.2012.01.004.
Vujosevic, Stela; Muraca, Andrea; Alkabes, Micol; Villani, Edoardo; Cavarzeran, Fabiano; Rossetti, Luca; De Cillaʼ, Stefano (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. En: Retina (Philadelphia, Pa.). Vol. 39; No. 3; pp. 435-445; 1539-2864; Disponible en: 10.1097/IAE.0000000000001990.
Stem, Maxwell S.; Hussain, Munira; Lentz, Stephen I.; Raval, Nilesh; Gardner, Thomas W.; Pop-Busui, Rodica; Shtein, Roni M. (2014) Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus. En: Journal of diabetes and its complications. Vol. 28; No. 5; pp. 658-661; 1056-8727; Consultado en: 2021/03/02/01:40:05. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146399/. Disponible en: 10.1016/j.jdiacomp.2014.06.007.
Tang, Yizhen; Chen, Xinyi; Zhang, Xiaobo; Tang, Qiaomei; Liu, Siyu; Yao, Ke (2017) Clinical evaluation of corneal changes after phacoemulsification in diabetic and non-diabetic cataract patients, a systematic review and meta-analysis. En: Scientific Reports. Vol. 7; 2045-2322; Consultado en: 2021/03/05/11:34:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658349/. Disponible en: 10.1038/s41598-017-14656-7.
Fong, Donald S.; Aiello, Lloyd; Gardner, Thomas W.; King, George L.; Blankenship, George; Cavallerano, Jerry D.; Ferris, Fredrick L.; Klein, Ronald (2004) Retinopathy in Diabetes. En: Diabetes Care. Vol. 27; No. suppl 1; pp. s84-s87; 0149-5992, 1935-5548; Consultado en: 2021/03/05/13:54:59. Disponible en: https://care.diabetesjournals.org/content/27/suppl_1/s84. Disponible en: 10.2337/diacare.27.2007.S84.
Costantini, E.; Touzeau, O.; Gaujoux, T.; Basli, E.; Kopito, R.; Borderie, V. M.; Laroche, L. (2009) Age-Related Changes in Central and Peripheral Corneal Thickness. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 13; pp. 5107-5107; 1552-5783; Consultado en: 2021/03/05/22:41:18. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2367476.
Abib, F. C.; Barreto Junior, J. (2001) Behavior of corneal endothelial density over a lifetime. En: Journal of Cataract and Refractive Surgery. Vol. 27; No. 10; pp. 1574-1578; 0886-3350; Disponible en: 10.1016/s0886-3350(01)00925-7.
Islam, Qamar Ul; Saeed, Muhammad Kamran; Mehboob, Mohammad Asim (2017) Age related changes in corneal morphological characteristics of healthy Pakistani eyes. En: Saudi Journal of Ophthalmology. Vol. 31; No. 2; pp. 86-90; 1319-4534; Consultado en: 2021/03/06/13:03:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436377/. Disponible en: 10.1016/j.sjopt.2017.02.009.
Zhao, Di; Cho, Juhee; Kim, Myung Hun; Friedman, David S.; Guallar, Eliseo (2015) Diabetes, Fasting Glucose, and the Risk of Glaucoma: A Meta-analysis. En: Ophthalmology. Vol. 122; No. 1; pp. 72-78; 0161-6420, 1549-4713; Consultado en: 2021/03/12/09:06:51. Disponible en: https://www.aaojournal.org/article/S0161-6420(14)00697-6/abstract. Disponible en: 10.1016/j.ophtha.2014.07.051.
Doughty, M. J.; Zaman, M. L. (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. En: Survey of Ophthalmology. Vol. 44; No. 5; pp. 367-408; 0039-6257; Disponible en: 10.1016/s0039-6257(00)00110-7.
Margo, Jordan A.; Whiting, Martha F.; Brown, Clayton H.; Hoover, Caroline K.; Munir, Wuqaas M. (2017) The Effect of Chronic Pulmonary Disease and Mechanical Ventilation on Corneal Donor Endothelial Cell Density and Transplant Suitability. En: American Journal of Ophthalmology. Vol. 183; pp. 65-70; 0002-9394; Consultado en: 2021/03/15/16:23:06. Disponible en: https://www.sciencedirect.com/science/article/pii/S000293941730377X. Disponible en: 10.1016/j.ajo.2017.08.023.
Magdum, Renu M.; Mutha, Neha; Maheshgauri, Rupali (2013) A study of corneal endothelial changes in soft contact lens wearers using non-contact specular microscopy. En: Medical Journal of Dr. D.Y. Patil University. Vol. 6; No. 3; pp. 245 0975-2870; Consultado en: 2021/03/15/16:59:08. Disponible en: https://www.mjdrdypu.org/article.asp?issn=0975-2870;year=2013;volume=6;issue=3;spage=245;epage=249;aulast=Magdum;type=0. Disponible en: 10.4103/0975-2870.114645.
Corneal endothelial cell density in glaucoma. Consultado en: 2021/03/15/17:14:55. Disponible en: https://europepmc.org/article/med/9143804.
Kheirkhah, Ahmad; Saboo, Ujwala S.; Abud, Tulio B.; Dohlman, Thomas H.; Arnoldner, Michael A.; Hamrah, Pedram; Dana, Reza (2015) Reduced Corneal Endothelial Cell Density in Patients with Dry Eye Disease. En: American journal of ophthalmology. Vol. 159; No. 6; pp. 1022 Consultado en: 2021/03/15/18:12:02. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427236/. Disponible en: 10.1016/j.ajo.2015.03.011.
Konstantopoulos, Spyros (2011) Fixed effects and variance components estimation in three-level meta-analysis. En: Research Synthesis Methods. Vol. 2; No. 1; pp. 61-76; 1759-2879; Disponible en: 10.1002/jrsm.35.
Viechtbauer, Wolfgang (2010) Conducting Meta-Analyses in R with the metafor Package. En: Journal of Statistical Software. Vol. 36; No. 1; pp. 1-48; 1548-7660; Consultado en: 2021/03/26/22:53:47. Disponible en: https://www.jstatsoft.org/index.php/jss/article/view/v036i03. Disponible en: 10.18637/jss.v036.i03.
R Core Team (2020); R: A language and environment for statistical computing. R Foundation for Statistical Computing. Consultado en: 2021/03/26/23:08:22. Disponible en: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006.
Kudva, Ajay A.; Lasrado, Adeline S.; Hegde, Sudhir; Kadri, Rajani; Devika, P.; Shetty, Akansha (2020) Corneal endothelial cell changes in diabetics versus age group matched nondiabetics after manual small incision cataract surgery. En: Indian Journal of Ophthalmology. Vol. 68; No. 1; pp. 72 0301-4738; Consultado en: 2021/03/29/10:13:00. Disponible en: https://www.ijo.in/article.asp?issn=0301-4738;year=2020;volume=68;issue=1;spage=72;epage=76;aulast=Kudva;type=0. Disponible en: 10.4103/ijo.IJO_406_19.
Gambato, Catia; Longhin, Evelyn; Catania, Anton Giulio; Lazzarini, Daniela; Parrozzani, Raffaele; Midena, Edoardo (2015) Aging and corneal layers: an in vivo corneal confocal microscopy study. En: Graefe's Archive for Clinical and Experimental Ophthalmology. Vol. 253; No. 2; pp. 267-275; 1435-702X; Consultado en: 2021/04/03/12:31:21. Disponible en: https://doi.org/10.1007/s00417-014-2812-2. Disponible en: 10.1007/s00417-014-2812-2.
Niederer, R. L.; Perumal, D.; Sherwin, T.; McGhee, C. N. J. (2007) Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. En: The British Journal of Ophthalmology. Vol. 91; No. 9; pp. 1165-1169; 0007-1161; Disponible en: 10.1136/bjo.2006.112656.
Vassilev, Vassil S.; Mandai, Michiko; Yonemura, Shigenobu; Takeichi, Masatoshi (2012) Loss of N-Cadherin from the Endothelium Causes Stromal Edema and Epithelial Dysgenesis in the Mouse Cornea. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 11; pp. 7183-7193; 1552-5783; Consultado en: 2021/04/03/17:34:44. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2127685. Disponible en: 10.1167/iovs.12-9949.
Wang, Yan; Zhang, Hong-Tao; Su, Xing-Li; Deng, Xiu-Ling; Yuan, Bing-Xiang; Zhang, Wei; Wang, Xin-Feng; Yang, Yu-Bai (2010) Experimental diabetes mellitus down-regulates large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle and alters functional conductance. En: Current Neurovascular Research. Vol. 7; No. 2; pp. 75-84; 1875-5739; Disponible en: 10.2174/156720210791184925.
Guéguinou, Maxime; Chantôme, Aurélie; Fromont, Gaëlle; Bougnoux, Philippe; Vandier, Christophe; Potier-Cartereau, Marie (2014) KCa and Ca2+ channels: The complex thought. En: Biochimica et Biophysica Acta (BBA). Calcium Signaling in Health and Disease; Vol. 1843; No. 10; pp. 2322-2333; 0167-4889; Consultado en: 2021/04/05/10:39:10. Disponible en: https://www.sciencedirect.com/science/article/pii/S0167488914000834. Disponible en: 10.1016/j.bbamcr.2014.02.019.
Hage, Travis A.; Salkoff, Lawrence (2012) Sodium-Activated Potassium Channels Are Functionally Coupled to Persistent Sodium Currents. En: The Journal of Neuroscience. Vol. 32; No. 8; pp. 2714-2721; 0270-6474; Consultado en: 2021/04/05/14:03:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319674/. Disponible en: 10.1523/JNEUROSCI.5088-11.2012.
Yi, Fu; Ling, Tian-You; Lu, Tong; Wang, Xiao-Li; Li, Jingchao; Claycomb, William C.; Shen, Win-Kuang; Lee, Hon-Chi (2015) Down-regulation of the Small Conductance Calcium-activated Potassium Channels in Diabetic Mouse Atria*. En: Journal of Biological Chemistry. Vol. 290; No. 11; pp. 7016-7026; 0021-9258; Consultado en: 2021/04/05/20:57:36. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925820767797. Disponible en: 10.1074/jbc.M114.607952.
Zhao, Li-Mei; Wang, Yan; Ma, Xiao-Zhen; Wang, Nan-Ping; Deng, Xiu-Ling (2014) Advanced glycation end products impair K(Ca)3.1-and K(Ca)2.3-mediated vasodilatation via oxidative stress in rat mesenteric arteries. En: Pflugers Archiv: European Journal of Physiology. Vol. 466; No. 2; pp. 307-317; 1432-2013; Disponible en: 10.1007/s00424-013-1324-y.
Gagnon, M. M.; Boisjoly, H. M.; Brunette, I.; Charest, M.; Amyot, M. (1997) Corneal endothelial cell density in glaucoma. En: Cornea. Vol. 16; No. 3; pp. 314-318; 0277-3740
Tarazona, Sonia; Furió-Tarí, Pedro; Turrà, David; Pietro, Antonio Di; Nueda, María José; Ferrer, Alberto; Conesa, Ana (2015) Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. En: Nucleic Acids Research. Vol. 43; No. 21; pp. e140-e140; 0305-1048; Consultado en: 2021/04/24/22:38:09. Disponible en: https://doi.org/10.1093/nar/gkv711. Disponible en: 10.1093/nar/gkv711.
DAVID Functional Annotation Bioinformatics Microarray Analysis. Consultado en: 2021/04/24/23:07:31. Disponible en: https://david.ncifcrf.gov/.
Yu, Tao; Deng, Chunyu; Wu, Ruobin; Guo, Huiming; Zheng, Shaoyi; Yu, Xiyong; Shan, Zhixin; Kuang, Sujuan; Lin, Qiuxiong (2012) Decreased expression of small-conductance Ca2+-activated K+ channels SK1 and SK2 in human chronic atrial fibrillation. En: Life Sciences. Vol. 90; No. 5; pp. 219-227; 0024-3205; Consultado en: 2021/04/25/00:22:49. Disponible en: https://www.sciencedirect.com/science/article/pii/S0024320511005704. Disponible en: 10.1016/j.lfs.2011.11.008.
Bonito, B.; Sauter, D. R. P.; Schwab, A.; Djamgoz, M. B. A.; Novak, I. (2016) KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34. En: Pflügers Archiv. Vol. 468; No. 11; pp. 1865-1875; 1432-2013; Consultado en: 2021/04/25/01:36:47. Disponible en: https://doi.org/10.1007/s00424-016-1891-9. Disponible en: 10.1007/s00424-016-1891-9.
Kopec, Ashley M.; Rivera, Phillip D.; Lacagnina, Michael J.; Hanamsagar, Richa; Bilbo, Staci D. (2017) Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. En: Journal of Neuroscience Methods. Vol. 280; pp. 64-76; 0165-0270; Consultado en: 2021/04/25/02:12:42. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165027017300389. Disponible en: 10.1016/j.jneumeth.2017.02.002.
Ion Transport Function of SLC4A11 in Corneal Endothelium | IOVS | ARVO Journals. Consultado en: 2021/05/09/22:00:06. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2189793.
Jalimarada, Supriya S.; Ogando, Diego G.; Vithana, Eranga N.; Bonanno, Joseph A. (2013) Ion Transport Function of SLC4A11 in Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 54; No. 6; pp. 4330-4340; 1552-5783; Consultado en: 2021/05/09/22:00:32. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2189793. Disponible en: 10.1167/iovs.13-11929.
Pedarzani, P.; Stocker, M. (2008) Molecular and cellular basis of small--and intermediate-conductance, calcium-activated potassium channel function in the brain. En: Cellular and molecular life sciences: CMLS. Vol. 65; No. 20; pp. 3196-3217; 1420-682X; Disponible en: 10.1007/s00018-008-8216-x.
SK2 and SK3 Expression Differentially Affect Firing Frequency and Precision in Dopamine Neurons. Consultado en: 2021/05/09/22:12:02. Disponible en: https://www-ncbi-nlm-nih-gov.ez.urosario.edu.co/pmc/articles/PMC3383402/.
Deignan, Jason; Luján, Rafael; Bond, Chris; Riegel, Arthur; Watanabe, Masahiko; Williams, John T.; Maylie, James; Adelman, John P. (2012) SK2 and SK3 Expression Differentially Affect Firing Frequency and Precision in Dopamine Neurons. En: Neuroscience. Vol. 217; pp. 67-76; 0306-4522; Consultado en: 2021/05/09/22:12:04. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383402/. Disponible en: 10.1016/j.neuroscience.2012.04.053.
Gu, Mingxia; Zhu, Yanrong; Yin, Xiaorong; Zhang, Dai-Min (2018) Small-conductance Ca 2+-activated K + channels: insights into their roles in cardiovascular disease. En: Experimental & Molecular Medicine. Vol. 50; No. 4; pp. 1-7; 2092-6413; Consultado en: 2021/05/09/22:24:50. Disponible en: https://www.nature.com/articles/s12276-018-0043-z. Disponible en: 10.1038/s12276-018-0043-z.
Lu, Ling; Timofeyev, Valeriy; Li, Ning; Rafizadeh, Sassan; Singapuri, Anil; Harris, Todd R.; Chiamvimonvat, Nipavan (2009) α-Actinin2 cytoskeletal protein is required for the functional membrane localization of a Ca2+-activated K+ channel (SK2 channel). En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 106; No. 43; pp. 18402-18407; 0027-8424; Consultado en: 2021/05/09/22:46:35. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775294/. Disponible en: 10.1073/pnas.0908207106.
Kim, Tae Yun; Terentyeva, Radmila; Roder, Karim H. F.; Li, Weiyan; Liu, Man; Greener, Ian; Hamilton, Shanna; Polina, Iuliia; Murphy, Kevin R.; Clements, Richard T.; Dudley, Samuel C.; Koren, Gideon; Choi, Bum-Rak; Terentyev, Dmitry (2017) SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. En: Cardiovascular Research. Vol. 113; No. 3; pp. 343-353; 0008-6363; Consultado en: 2021/05/09/22:48:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852621/. Disponible en: 10.1093/cvr/cvx005.
Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M.; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto (2013) Laminar shear stress upregulates endothelial Ca2+-activated K+ channels KCa2.3 and KCa3.1 via a Ca2+/calmodulin-dependent protein kinase kinase/Akt/p300 cascade. En: American Journal of Physiology-Heart and Circulatory Physiology. Vol. 305; No. 4; pp. H484-H493; 0363-6135; Consultado en: 2021/05/09/23:17:04. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpheart.00642.2012. Disponible en: 10.1152/ajpheart.00642.2012.
Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. Consultado en: 2021/05/09/23:19:41. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2005.096818.
D’Arcangelo, Daniela; Scatozza, Francesca; Giampietri, Claudia; Marchetti, Paolo; Facchiano, Francesco; Facchiano, Antonio (2019) Ion Channel Expression in Human Melanoma Samples: In Silico Identification and Experimental Validation of Molecular Targets. En: Cancers. Vol. 11; No. 4; pp. 446 Consultado en: 2021/05/09/23:21:47. Disponible en: https://www.mdpi.com/2072-6694/11/4/446. Disponible en: 10.3390/cancers11040446.
Feranchak, Andrew P.; Doctor, R. Brian; Troetsch, Marlyn; Brookman, Kathryn; Johnson, Sylene M.; Fitz, J. Gregory (2004) Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels. En: Gastroenterology. Vol. 127; No. 3; pp. 903-913; 0016-5085; Disponible en: 10.1053/j.gastro.2004.06.047.
Chantome, Aurelie; Girault, Alban; Potier, Marie; Collin, Christine; Vaudin, Pascal; Pagès, Jean-Christophe; Vandier, Christophe; Joulin, Virginie (2009) KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility. En: Experimental Cell Research. Vol. 315; No. 20; pp. 3620-3630; 1090-2422; Disponible en: 10.1016/j.yexcr.2009.07.021.
Liebau, Stefan; Vaida, Bianca; Proepper, Christian; Grissmer, Stephan; Storch, Alexander; Boeckers, Tobias M.; Dietl, Paul; Wittekindt, Oliver H. (2007) Formation of cellular projections in neural progenitor cells depends on SK3 channel activity. En: Journal of Neurochemistry. Vol. 101; No. 5; pp. 1338-1350; 1471-4159; Consultado en: 2021/05/09/23:30:50. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-4159.2006.04437.x. Disponible en: https://doi.org/10.1111/j.1471-4159.2006.04437.x.
Potier, Marie; Tran, Truong An; Chantome, Aurelie; Girault, Alban; Joulin, Virginie; Bougnoux, Philippe; Vandier, Christophe; Pierre, Fabrice (2010) Altered SK3/KCa2.3-mediated migration in adenomatous polyposis coli (Apc) mutated mouse colon epithelial cells. En: Biochemical and Biophysical Research Communications. Vol. 397; No. 1; pp. 42-47; 1090-2104; Disponible en: 10.1016/j.bbrc.2010.05.046.
Koegel, Heidi; Kaesler, Susanne; Burgstahler, Ralf; Werner, Sabine; Alzheimer, Christian (2003) Unexpected down-regulation of the hIK1 Ca2+-activated K+ channel by its opener 1-ethyl-2-benzimidazolinone in HaCaT keratinocytes. Inverse effects on cell growth and proliferation. En: The Journal of Biological Chemistry. Vol. 278; No. 5; pp. 3323-3330; 0021-9258; Disponible en: 10.1074/jbc.M208914200.
Kaushal, Vikas; Koeberle, Paulo D.; Wang, Yimin; Schlichter, Lyanne C. (2007) The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. En: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. Vol. 27; No. 1; pp. 234-244; 1529-2401; Disponible en: 10.1523/JNEUROSCI.3593-06.2007.
Lauf, Peter K.; Misri, Sandeep; Chimote, Ameet A.; Adragna, Norma C. (2008) Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells. En: American Journal of Physiology-Cell Physiology. Vol. 294; No. 3; pp. C820-C832; 0363-6143; Consultado en: 2021/05/09/23:45:14. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00375.2007. Disponible en: 10.1152/ajpcell.00375.2007.
Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. Consultado en: 2021/05/09/23:45:45. Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/22992678/.
K ca 3.1 Activation Via P2y 2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. Consultado en: 2021/05/09/23:46:41. Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/28659615/.
Robles-Martínez, L.; Garay, E.; Martel-Gallegos, M. G.; Cisneros-Mejorado, A.; Pérez-Montiel, D.; Lara, A.; Arellano, R. O. (2017) Kca3.1 Activation Via P2y2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. En: Scientific Reports. Vol. 7; No. 1; pp. 4340 2045-2322; Disponible en: 10.1038/s41598-017-04292-6.
Sciaccaluga, Miriam; Fioretti, Bernard; Catacuzzeno, Luigi; Pagani, Francesca; Bertollini, Cristina; Rosito, Maria; Catalano, Myriam; D'Alessandro, Giuseppina; Santoro, Antonio; Cantore, Giampaolo; Ragozzino, Davide; Castigli, Emilia; Franciolini, Fabio; Limatola, Cristina (2010) CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity. En: American Journal of Physiology-Cell Physiology. Vol. 299; No. 1; pp. C175-C184; 0363-6143; Consultado en: 2021/05/09/23:52:49. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00344.2009. Disponible en: 10.1152/ajpcell.00344.2009.
Romanenko, Victor G; Nakamoto, Tetsuji; Srivastava, Alaka; Begenisich, Ted; Melvin, James E (2007) Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands. En: The Journal of Physiology. Vol. 581; No. Pt 2; pp. 801-817; 0022-3751; Consultado en: 2021/05/09/23:53:45. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075181/. Disponible en: 10.1113/jphysiol.2006.127498.
Steudel, Friederike A.; Mohr, Corinna J.; Stegen, Benjamin; Nguyen, Hoang Y.; Barnert, Andrea; Steinle, Marc; Beer-Hammer, Sandra; Koch, Pierre; Lo, Wing-Yee; Schroth, Werner; Hoppe, Reiner; Brauch, Hiltrud; Ruth, Peter; Huber, Stephan M.; Lukowski, Robert (2017) SK4 channels modulate Ca2+ signalling and cell cycle progression in murine breast cancer. En: Molecular Oncology. Vol. 11; No. 9; pp. 1172-1188; 1878-0261; Disponible en: 10.1002/1878-0261.12087.
Trinh, Nguyen Thu Ngan; Privé, Anik; Maillé, Emilie; Noël, Josette; Brochiero, Emmanuelle (2008) EGF and K+ channel activity control normal and cystic fibrosis bronchial epithelia repair. En: American Journal of Physiology. Lung Cellular and Molecular Physiology. Vol. 295; No. 5; pp. L866-880; 1040-0605; Disponible en: 10.1152/ajplung.90224.2008.
Vigneault, Patrick; Naud, Patrice; Qi, Xiaoyan; Xiao, Jiening; Villeneuve, Louis; Davis, Darryl R.; Nattel, Stanley (2018) Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells. En: The Journal of Physiology. Vol. 596; No. 12; pp. 2359-2379; 1469-7793; Disponible en: 10.1113/JP275388.
McFerrin, Michael B.; Turner, Kathryn L.; Cuddapah, Vishnu Anand; Sontheimer, Harald (2012) Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. En: American Journal of Physiology. Cell Physiology. Vol. 303; No. 10; pp. C1070-1078; 1522-1563; Disponible en: 10.1152/ajpcell.00040.2012.
Tejada, Maria A.; Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A. (2017) Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes. En: PloS One. Vol. 12; No. 2; pp. e0169914 1932-6203; Disponible en: 10.1371/journal.pone.0169914.
Tajima, Nobuyoshi; Schönherr, Kristina; Niedling, Susanna; Kaatz, Martin; Kanno, Hiroshi; Schönherr, Roland; Heinemann, Stefan H (2006) Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. En: The Journal of Physiology. Vol. 571; No. Pt 2; pp. 349-359; 0022-3751; Consultado en: 2021/05/10/00:11:07. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796787/. Disponible en: 10.1113/jphysiol.2005.096818.
Wang, Jun; Morishima, Shigeru; Okada, Yasunobu (2003) IK channels are involved in the regulatory volume decrease in human epithelial cells. En: American Journal of Physiology-Cell Physiology. Vol. 284; No. 1; pp. C77-C84; 0363-6143; Consultado en: 2021/05/10/01:37:22. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00132.2002. Disponible en: 10.1152/ajpcell.00132.2002.
Millership, Joanne E.; Devor, Daniel C.; Hamilton, Kirk L.; Balut, Corina M.; Bruce, Jason I. E.; Fearon, Ian M. (2010) Calcium-activated K+ channels increase cell proliferation independent of K+ conductance. En: American Journal of Physiology-Cell Physiology. Vol. 300; No. 4; pp. C792-C802; 0363-6143; Consultado en: 2021/05/10/01:48:02. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00274.2010. Disponible en: 10.1152/ajpcell.00274.2010.
Sundelacruz, Sarah; Levin, Michael; Kaplan, David L. (2009) Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. En: Stem Cell Reviews and Reports. Vol. 5; No. 3; pp. 231-246; 1558-6804; Consultado en: 2021/05/10/02:00:14. Disponible en: https://doi.org/10.1007/s12015-009-9080-2. Disponible en: 10.1007/s12015-009-9080-2.
Barrett, K. E.; Keely, S. J. (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. En: Annual Review of Physiology. Vol. 62; pp. 535-572; 0066-4278; Disponible en: 10.1146/annurev.physiol.62.1.535.
Bernard, K.; Bogliolo, S.; Soriani, O.; Ehrenfeld, J. (2003) Modulation of calcium-dependent chloride secretion by basolateral SK4-like channels in a human bronchial cell line. En: The Journal of Membrane Biology. Vol. 196; No. 1; pp. 15-31; 0022-2631; Disponible en: 10.1007/s00232-003-0621-3.
Reid, Brian; Zhao, Min (2014) The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. En: Advances in Wound Care. Vol. 3; No. 2; pp. 184-201; 2162-1918; Disponible en: 10.1089/wound.2013.0442.
Justet, Cristian; Chifflet, Silvia; Hernandez, Julio A. (2019) Calcium Oscillatory Behavior and Its Possible Role during Wound Healing in Bovine Corneal Endothelial Cells in Culture. En: BioMed Research International. Vol. 2019; pp. e8647121 2314-6133; Consultado en: 2021/05/10/09:50:27. Disponible en: https://www.hindawi.com/journals/bmri/2019/8647121/. Disponible en: 10.1155/2019/8647121.
Watsky, M. A. (1995) Nonselective cation channel activation during wound healing in the corneal endothelium. En: The American Journal of Physiology. Vol. 268; No. 5 Pt 1; pp. C1179-1185; 0002-9513; Disponible en: 10.1152/ajpcell.1995.268.5.C1179.
Vieira, Ana Carolina; Reid, Brian; Cao, Lin; Mannis, Mark J.; Schwab, Ivan R.; Zhao, Min (2011) Ionic Components of Electric Current at Rat Corneal Wounds. En: PLOS ONE. Vol. 6; No. 2; pp. e17411 1932-6203; Consultado en: 2021/05/10/09:59:58. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017411. Disponible en: 10.1371/journal.pone.0017411.
Yu, Zhihua; Dou, Fangfang; Wang, Yanxia; Hou, Lina; Chen, Hongzhuan (2018) Ca2+-dependent endoplasmic reticulum stress correlation with astrogliosis involves upregulation of KCa3.1 and inhibition of AKT/mTOR signaling. En: Journal of Neuroinflammation. Vol. 15; No. 1; pp. 316 1742-2094; Disponible en: 10.1186/s12974-018-1351-x.
Zundler, Sebastian; Caioni, Massimiliano; Müller, Martina; Strauch, Ulrike; Kunst, Claudia; Woelfel, Gisela (2016) K+ Channel Inhibition Differentially Regulates Migration of Intestinal Epithelial Cells in Inflamed vs. Non-Inflamed Conditions in a PI3K/Akt-Mediated Manner. En: PLOS ONE. Vol. 11; No. 1; pp. e0147736 1932-6203; Consultado en: 2021/05/10/12:56:32. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147736. Disponible en: 10.1371/journal.pone.0147736.
Bhattacharjee, Arin; Joiner, William J.; Wu, Meilin; Yang, Youshan; Sigworth, Fred J.; Kaczmarek, Leonard K. (2003) Slick (Slo2.1), a Rapidly-Gating Sodium-Activated Potassium Channel Inhibited by ATP. En: Journal of Neuroscience. Vol. 23; No. 37; pp. 11681-11691; 0270-6474, 1529-2401; Consultado en: 2021/05/10/14:23:53. Disponible en: https://www.jneurosci.org/content/23/37/11681. Disponible en: 10.1523/JNEUROSCI.23-37-11681.2003.
Bhattacharjee, Arin; von Hehn, Christian A. A.; Mei, Xiaofeng; Kaczmarek, Leonard K. (2005) Localization of the Na+-activated K+ channel Slick in the rat central nervous system. En: The Journal of Comparative Neurology. Vol. 484; No. 1; pp. 80-92; 0021-9967; Disponible en: 10.1002/cne.20462.
Tejada, Maria A.; Stople, Kathleen; Bomholtz, Sofia Hammami; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A. (2014) Cell Volume Changes Regulate Slick (Slo2.1), but Not Slack (Slo2.2) K+ Channels. En: PLOS ONE. Vol. 9; No. 10; pp. e110833 1932-6203; Consultado en: 2021/05/10/14:31:38. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110833. Disponible en: 10.1371/journal.pone.0110833.
Tomasello, Danielle L.; Hurley, Edward; Wrabetz, Lawrence; Bhattacharjee, Arin (2017) Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia. En: Journal of Experimental Neuroscience. Vol. 11; pp. 1179069517726996 1179-0695; Disponible en: 10.1177/1179069517726996.
Smith, Charles O.; Wang, Yves T.; Nadtochiy, Sergiy M.; Miller, James H.; Jonas, Elizabeth A.; Dirksen, Robert T.; Nehrke, Keith; Brookes, Paul S. (2018) Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization. En: FASEB journal: official publication of the Federation of American Societies for Experimental Biology. pp. fj201800139R 1530-6860; Disponible en: 10.1096/fj.201800139R.
KCNMA1 Encoded Cardiac BK Channels Afford Protection against Ischemia-Reperfusion Injury. Consultado en: 2021/05/10/19:11:05. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103402.
Gribkoff, Valentin K.; Starrett, John E.; Dworetzky, Steven I. (2001) Maxi-K Potassium Channels: Form, Function, and Modulation of a Class of Endogenous Regulators of Intracellular Calcium. En: The Neuroscientist. Vol. 7; No. 2; pp. 166-177; 1073-8584; Consultado en: 2021/05/10/19:38:33. Disponible en: https://doi.org/10.1177/107385840100700211. Disponible en: 10.1177/107385840100700211.
Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico (2014) MaxiK channel and cell signalling. En: Pflugers Archiv : European journal of physiology. Vol. 466; No. 5; pp. 875-886; 0031-6768; Consultado en: 2021/05/10/19:50:03. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969412/. Disponible en: 10.1007/s00424-013-1359-0.
Amano, Shiro; Kaji, Yuichi; Mimura, Tatsuya (2010) Biology of corneal endothelial cells in vivo and in vitro. En: Japanese Journal of Ophthalmology. Vol. 54; No. 3; pp. 211-214; 1613-2246; Disponible en: 10.1007/s10384-010-0799-8.
Dawczynski, Jens; Franke, Sibylle; Blum, Marcus; Kasper, Michael; Stein, Günter; Strobel, Jürgen (2002) Advanced glycation end-products in corneas of patients with keratoconus. En: Graefe's Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie. Vol. 240; No. 4; pp. 296-301; 0721-832X; Disponible en: 10.1007/s00417-002-0445-3.
Kase, Satoru; Ishida, Susumu; Rao, Narsing Adupa (2011) Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study. En: Journal of Diabetes Mellitus. Vol. 1; No. 3; pp. 57-62; Consultado en: 2021/05/10/22:24:16. Disponible en: http://www.scirp.org/Journal/Paperabs.aspx?paperid=7107. Disponible en: 10.4236/jdm.2011.13009.
Satoru, Kase; Susumu, Ishida; Narsing Adupa, Rao (2011) Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study. En: Journal of Diabetes Mellitus. Vol. 2011; 2160-5858; Consultado en: 2021/05/10/22:25:41. Disponible en: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=7107. Disponible en: 10.4236/jdm.2011.13009.
Price, Marianne O.; Thompson, Robert W.; Price, Francis W. (2003) Risk factors for various causes of failure in initial corneal grafts. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 121; No. 8; pp. 1087-1092; 0003-9950; Disponible en: 10.1001/archopht.121.8.1087.
Yu, Alice L.; Kaiser, Michaela; Schaumberger, Markus; Messmer, Elisabeth; Kook, Daniel; Welge-Lussen, Ulrich (2014) Donor-related risk factors and preoperative recipient-related risk factors for graft failure. En: Cornea. Vol. 33; No. 11; pp. 1149-1156; 1536-4798; Disponible en: 10.1097/ICO.0000000000000225.
Price, Marianne O.; Lisek, Marek; Feng, Matthew T.; Price, Francis W. (2017) Effect of Donor and Recipient Diabetes Status on Descemet Membrane Endothelial Keratoplasty Adherence and Survival. En: Cornea. Vol. 36; No. 10; pp. 1184-1188; 1536-4798; Disponible en: 10.1097/ICO.0000000000001305.
Zhao, Han; He, Yan; Ren, Yue-Rong; Chen, Bai-Hua (2019) Corneal alteration and pathogenesis in diabetes mellitus. En: International Journal of Ophthalmology. Vol. 12; No. 12; pp. 1939-1950; 2222-3959; Consultado en: 2021/05/10/23:27:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901883/. Disponible en: 10.18240/ijo.2019.12.17.
ImageJ. Consultado en: 2021/05/11/09:28:05. Disponible en: https://imagej-nih-gov.ez.urosario.edu.co/ij/.
Ramteke, Pranay; Deb, Ankita; Shepal, Varsha; Bhat, Manoj Kumar (2019) Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. En: Cancers. Vol. 11; No. 9; 2072-6694; Consultado en: 2021/05/12/10:46:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770430/. Disponible en: 10.3390/cancers11091402.
Lopez, Rebecca; Arumugam, Arunkumar; Joseph, Riya; Monga, Kanika; Boopalan, Thiyagarajan; Agullo, Pamela; Gutierrez, Christina; Nandy, Sushmita; Subramani, Ramadevi; Rosa, Jose Manuel de la; Lakshmanaswamy, Rajkumar (2013) Hyperglycemia Enhances the Proliferation of Non-Tumorigenic and Malignant Mammary Epithelial Cells through Increased leptin/IGF1R Signaling and Activation of AKT/mTOR. En: PLOS ONE. Vol. 8; No. 11; pp. e79708 1932-6203; Consultado en: 2021/05/12/10:57:24. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079708. Disponible en: 10.1371/journal.pone.0079708.
Li, Wenjie; Zhang, Xuehui; Sang, Hui; Zhou, Ying; Shang, Chunyu; Wang, Yongqing; Zhu, Hong (2019) Effects of hyperglycemia on the progression of tumor diseases. En: Journal of Experimental & Clinical Cancer Research. Vol. 38; No. 1; pp. 327 1756-9966; Consultado en: 2021/05/12/11:32:00. Disponible en: https://doi.org/10.1186/s13046-019-1309-6. Disponible en: 10.1186/s13046-019-1309-6.
Wolf, Gunter (2000) Cell cycle regulation in diabetic nephropathy. En: Kidney International. Diabetic kidney disease research: Where do we stand at the turn of the century?; Vol. 58; pp. S59-S66; 0085-2538; Consultado en: 2021/05/12/15:22:50. Disponible en: https://www.sciencedirect.com/science/article/pii/S0085253815474241. Disponible en: 10.1046/j.1523-1755.2000.07710.x.
Jannière, Laurent; Canceill, Danielle; Suski, Catherine; Kanga, Sophie; Dalmais, Bérengère; Lestini, Roxane; Monnier, Anne-Françoise; Chapuis, Jérôme; Bolotin, Alexander; Titok, Marina; Chatelier, Emmanuelle Le; Ehrlich, S. Dusko (2007) Genetic Evidence for a Link Between Glycolysis and DNA Replication. En: PLOS ONE. Vol. 2; No. 5; pp. e447 1932-6203; Consultado en: 2021/05/12/16:25:47. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000447. Disponible en: 10.1371/journal.pone.0000447.
da Veiga Moreira, Jorgelindo; Peres, Sabine; Steyaert, Jean-Marc; Bigan, Erwan; Paulevé, Loïc; Nogueira, Marcel Levy; Schwartz, Laurent (2015) Cell cycle progression is regulated by intertwined redox oscillators. En: Theoretical Biology and Medical Modelling. Vol. 12; No. 1; pp. 10 1742-4682; Consultado en: 2021/05/12/16:52:31. Disponible en: https://doi.org/10.1186/s12976-015-0005-2. Disponible en: 10.1186/s12976-015-0005-2.
Nagy, Tamás; Fisi, Viktória; Frank, Dorottya; Kátai, Emese; Nagy, Zsófia; Miseta, Attila (2019) Hyperglycemia-Induced Aberrant Cell Proliferation; A Metabolic Challenge Mediated by Protein O-GlcNAc Modification. En: Cells. Vol. 8; No. 9; pp. 999 Consultado en: 2021/05/12/18:28:54. Disponible en: https://www.mdpi.com/2073-4409/8/9/999. Disponible en: 10.3390/cells8090999.
Yoon, Chang Ki; Yoon, Sam Young; Hwang, Jin Sun; Shin, Young Joo (2020) O-GlcNAc Signaling Augmentation Protects Human Corneal Endothelial Cells from Oxidative Stress via AKT Pathway Activation. En: Current Eye Research. Vol. 45; No. 5; pp. 556-562; 0271-3683; Consultado en: 2021/05/12/20:38:11. Disponible en: https://doi.org/10.1080/02713683.2019.1686154. Disponible en: 10.1080/02713683.2019.1686154.
Kruse, Carla R.; Singh, Mansher; Sørensen, Jens A.; Eriksson, Elof; Nuutila, Kristo (2016) The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats. En: Journal of Surgical Research. Vol. 206; No. 2; pp. 418-426; 0022-4804, 1095-8673; Consultado en: 2021/05/12/21:43:59. Disponible en: https://www.journalofsurgicalresearch.com/article/S0022-4804(16)30332-8/abstract. Disponible en: 10.1016/j.jss.2016.08.060.
Slawson, Chad; Zachara, Natasha E.; Vosseller, Keith; Cheung, Win D.; Lane, M. Daniel; Hart, Gerald W. (2005) Perturbations in O-linked β-N-Acetylglucosamine Protein Modification Cause Severe Defects in Mitotic Progression and Cytokinesis*. En: Journal of Biological Chemistry. Vol. 280; No. 38; pp. 32944-32956; 0021-9258; Consultado en: 2021/05/12/22:00:54. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925820791544. Disponible en: 10.1074/jbc.M503396200.
Pahwa, Heena; Khan, Md Touseef; Sharan, Kunal (2020) Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis. En: Molecular and Cellular Biochemistry. Vol. 469; No. 1-2; pp. 109-118; 1573-4919; Disponible en: 10.1007/s11010-020-03732-8.
Hsu, Chih-Chin; Chen, Carl Pai-Chu; Tsai, Wen-Chung; Yu, Shin-Ying; Wang, Jong-Shyan (2011) Measurement of Keratinocyte Migration in Hyperglycemia Media with an Electric Wound-Healing Assay. En: The FASEB Journal. Vol. 25; No. S1; pp. 680.1-680.1; 1530-6860; Consultado en: 2021/05/12/22:47:33. Disponible en: https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.25.1_supplement.680.1. Disponible en: https://doi.org/10.1096/fasebj.25.1_supplement.680.1.
Rikitake, Yoshiyuki; Liao, James K. (2005) Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. En: Circulation. Vol. 111; No. 24; pp. 3261-3268; 1524-4539; Disponible en: 10.1161/CIRCULATIONAHA.105.534024.
Akhtar, R. A.; Chaouchi, K. M. (2004) Effects of Hyperglycemia on Cell Migration and Proliferation, and Phospholipase C1 in Rabbit Corneal Epithelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 13; pp. 3799-3799; 1552-5783; Consultado en: 2021/05/12/23:09:39. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2409333.
Okumura, Naoki; Ueno, Morio; Koizumi, Noriko; Sakamoto, Yuji; Hirata, Kana; Hamuro, Junji; Kinoshita, Shigeru (2009) Enhancement on Primate Corneal Endothelial Cell Survival In Vitro by a ROCK Inhibitor. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 8; pp. 3680-3687; 1552-5783; Consultado en: 2021/05/12/23:46:58. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2185592. Disponible en: 10.1167/iovs.08-2634.
Koizumi, Noriko; Okumura, Naoki; Ueno, Morio; Nakagawa, Hiroko; Hamuro, Junji; Kinoshita, Shigeru (2013) Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. En: Cornea. Vol. 32; No. 8; pp. 1167-1170; 1536-4798; Disponible en: 10.1097/ICO.0b013e318285475d.
Wang, H. Z.; Wu, K. Y.; Lin, C. P.; Fong, J. C.; Hong, S. J. (1997) Alteration of glucose uptake in cultured human corneal endothelial cells grown in high glucose media via cAMP-dependent pathway. En: The Kaohsiung Journal of Medical Sciences. Vol. 13; No. 9; pp. 566-571; 1607-551X
Stuard, Whitney L.; Titone, Rossella; Robertson, Danielle M. (2020) The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. En: Frontiers in Endocrinology. Vol. 11; 1664-2392; Consultado en: 2021/05/13/21:59:11. Disponible en: https://www.frontiersin.org/articles/10.3389/fendo.2020.00024/full. Disponible en: 10.3389/fendo.2020.00024.
Takahashi, Hiroshi; Ohara, Kunitoshi; Ohmura, Takeo; Takahashi, Ryoki; Zieske, James D (2000) Glucose Transporter 1 Expression in Corneal Wound Repair under High Serum Glucose Level. En: Japanese Journal of Ophthalmology. Vol. 44; No. 5; pp. 470-474; 0021-5155; Consultado en: 2021/05/13/23:47:23. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021515500002227. Disponible en: 10.1016/S0021-5155(00)00222-7.
STRING: functional protein association networks. Consultado en: 2021/05/14/00:07:07. Disponible en: https://string-db.org/.
Philipp, Wolfgang; Speicher, Lilly; Humpel, Christian (2000) Expression of Vascular Endothelial Growth Factor and Its Receptors in Inflamed and Vascularized Human Corneas. En: Investigative Ophthalmology & Visual Science. Vol. 41; No. 9; pp. 2514-2522; 1552-5783; Consultado en: 2021/05/14/11:21:28. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2162302.
Deardorff, Phillip M.; McKay, Tina B.; Wang, Siran; Ghezzi, Chiara E.; Cairns, Dana M.; Abbott, Rosalyn D.; Funderburgh, James L.; Kenyon, Kenneth R.; Kaplan, David L. (2018) Modeling Diabetic Corneal Neuropathy in a 3D In Vitro Cornea System. En: Scientific Reports. Vol. 8; No. 1; pp. 17294 2045-2322; Consultado en: 2021/05/15/01:12:05. Disponible en: https://www.nature.com/articles/s41598-018-35917-z. Disponible en: 10.1038/s41598-018-35917-z.
Kovatchev, Boris P.; Otto, Erik; Cox, Daniel; Gonder-Frederick, Linda; Clarke, William (2006) Evaluation of a New Measure of Blood Glucose Variability in Diabetes. En: Diabetes Care. Vol. 29; No. 11; pp. 2433-2438; 0149-5992, 1935-5548; Consultado en: 2021/05/15/01:22:08. Disponible en: https://care.diabetesjournals.org/content/29/11/2433. Disponible en: 10.2337/dc06-1085.
Olaniyan, Mathew Folaranmi; Babatunde, Elizabeth Moyinoluwa (2016) Preventive (myoglobin, transferrin) and scavenging (superoxide dismutase, glutathione peroxidase) anti-oxidative properties of raw liquid extract of Morinda lucida leaf in the traditional treatment of Plasmodium infection. En: Journal of Natural Science, Biology, and Medicine. Vol. 7; No. 1; pp. 47-53; 0976-9668; Disponible en: 10.4103/0976-9668.175068.
Tinggi, Ujang (2008) Selenium: its role as antioxidant in human health. En: Environmental Health and Preventive Medicine. Vol. 13; No. 2; pp. 102-108; 1342-078X; Consultado en: 2021/05/15/09:26:03. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698273/. Disponible en: 10.1007/s12199-007-0019-4.
Fanger, Christopher M.; Ghanshani, Sanjiv; Logsdon, Naomi J.; Rauer, Heiko; Kalman, Katalin; Zhou, Jianming; Beckingham, Kathy; Chandy, K. George; Cahalan, Michael D.; Aiyar, Jayashree (1999) Calmodulin Mediates Calcium-dependent Activation of the Intermediate Conductance KCa Channel,IKCa1 *. En: Journal of Biological Chemistry. Vol. 274; No. 9; pp. 5746-5754; 0021-9258; Consultado en: 2021/05/15/11:32:45. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925819877189. Disponible en: 10.1074/jbc.274.9.5746.
Wulff, Heike; Castle, Neil A. (2010) Therapeutic potential of KCa3.1 blockers: an overview of recent advances, and promising trends. En: Expert Review of Clinical Pharmacology. Vol. 3; No. 3; pp. 385-396; 1751-2433; Consultado en: 2021/05/15/11:37:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347644/. Disponible en: 10.1586/ecp.10.11.
Ghanshani, S.; Wulff, H.; Miller, M. J.; Rohm, H.; Neben, A.; Gutman, G. A.; Cahalan, M. D.; Chandy, K. G. (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. En: The Journal of Biological Chemistry. Vol. 275; No. 47; pp. 37137-37149; 0021-9258; Disponible en: 10.1074/jbc.M003941200.
Grgic, Ivica; Eichler, Ines; Heinau, Philipp; Si, Han; Brakemeier, Susanne; Hoyer, Joachim; Köhler, Ralf (2005) Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. En: Arteriosclerosis, Thrombosis, and Vascular Biology. Vol. 25; No. 4; pp. 704-709; 1524-4636; Disponible en: 10.1161/01.ATV.0000156399.12787.5c.
Schilling, Tom; Stock, Christian; Schwab, Albrecht; Eder, Claudia (2004) Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. En: The European Journal of Neuroscience. Vol. 19; No. 6; pp. 1469-1474; 0953-816X; Disponible en: 10.1111/j.1460-9568.2004.03265.x.
Lang, Philipp A.; Kaiser, Stefanie; Myssina, Swetlana; Wieder, Thomas; Lang, Florian; Huber, Stephan M. (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. En: American Journal of Physiology. Cell Physiology. Vol. 285; No. 6; pp. C1553-1560; 0363-6143; Disponible en: 10.1152/ajpcell.00186.2003.
Elliott, James I.; Higgins, Christopher F. (2003) IKCa1 activity is required for cell shrinkage, phosphatidylserine translocation and death in T lymphocyte apoptosis. En: EMBO Reports. Vol. 4; No. 2; pp. 189-194; 1469-221X; Consultado en: 2021/05/15/12:00:05. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315824/. Disponible en: 10.1038/sj.embor.embor722.
Begenisich, Ted; Nakamoto, Tesuji; Ovitt, Catherine E.; Nehrke, Keith; Brugnara, Carlo; Alper, Seth L.; Melvin, James E. (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. En: The Journal of Biological Chemistry. Vol. 279; No. 46; pp. 47681-47687; 0021-9258; Disponible en: 10.1074/jbc.M409627200.
Wulff, Heike; Miller, Mark J.; Hänsel, Wolfram; Grissmer, Stephan; Cahalan, Michael D.; Chandy, K. George (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: A potential immunosuppressant. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 97; No. 14; pp. 8151-8156; 0027-8424; Consultado en: 2021/05/15/12:32:36. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC16685/.
Brugnara, C; Gee, B; Armsby, C C; Kurth, S; Sakamoto, M; Rifai, N; Alper, S L; Platt, O S (1996) Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. En: Journal of Clinical Investigation. Vol. 97; No. 5; pp. 1227-1234; 0021-9738; Consultado en: 2021/05/15/12:52:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507175/.
K+ channels as targets for specific immunomodulation. Consultado en: 2021/05/15/12:53:21. Disponible en: https://www-ncbi-nlm-nih-gov.ez.urosario.edu.co/pmc/articles/PMC2749963/.
Maezawa, Izumi; Jenkins, David Paul; Jin, Benjamin E.; Wulff, Heike (2012) Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease. En: International Journal of Alzheimer’s Disease. Vol. 2012; pp. e868972 2090-8024; Consultado en: 2021/05/15/20:24:08. Disponible en: https://www.hindawi.com/journals/ijad/2012/868972/. Disponible en: 10.1155/2012/868972.
Huang, Chunling; Yi, Hao; Shi, Ying; Cao, Qinghua; Shi, Yin; Cheng, Delfine; Braet, Filip; Chen, Xin-Ming; Pollock, Carol A. (2021) KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. En: Frontiers in Cell and Developmental Biology. Vol. 9; pp. 573814 2296-634X; Disponible en: 10.3389/fcell.2021.573814.
Zhu, Yan-Rong; Jiang, Xiao-Xin; Zhang, Dai-Min (2019) Critical regulation of atherosclerosis by the KCa3.1 channel and the retargeting of this therapeutic target in in-stent neoatherosclerosis. En: Journal of Molecular Medicine. Vol. 97; No. 9; pp. 1219-1229; 1432-1440; Consultado en: 2021/05/15/23:21:13. Disponible en: https://doi.org/10.1007/s00109-019-01814-9. Disponible en: 10.1007/s00109-019-01814-9.
Su, Xing-Li; Zhang, Hong; Yu, Wei; Wang, Shuang; Zhu, Wei-Jun (2013) Role of KCa3.1 channels in proliferation and migration of vascular smooth muscle cells by diabetic rat serum. En: The Chinese Journal of Physiology. Vol. 56; No. 3; pp. 155-162; 0304-4920; Disponible en: 10.4077/CJP.2013.BAB104.
Lin, Mike T.; Adelman, John P.; Maylie, James (2012) Modulation of endothelial SK3 channel activity by Ca2+-dependent caveolar trafficking. En: American Journal of Physiology-Cell Physiology. Vol. 303; No. 3; pp. C318-C327; 0363-6143; Consultado en: 2021/05/16/01:56:16. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00058.2012. Disponible en: 10.1152/ajpcell.00058.2012.
Roy, J. W.; Cowley, E. A.; Blay, J.; Linsdell, P. (2010) The intermediate conductance Ca2+-activated K+ channel inhibitor TRAM-34 stimulates proliferation of breast cancer cells via activation of oestrogen receptors. En: British Journal of Pharmacology. Vol. 159; No. 3; pp. 650-658; 1476-5381; Disponible en: 10.1111/j.1476-5381.2009.00557.x.
1-EBIO | #E-150 | CAS 10045-45-1. En: Alomone Labs. Consultado en: 2021/05/16/16:54:34. Disponible en: https://www.alomone.com/p/1-ebio/E-150.
Chadha, Preet S.; Liu, Lu; Rikard-Bell, Matt; Senadheera, Sevvandi; Howitt, Lauren; Bertrand, Rebecca L.; Grayson, T. Hilton; Murphy, Timothy V.; Sandow, Shaun L. (2011) Endothelium-Dependent Vasodilation in Human Mesenteric Artery Is Primarily Mediated by Myoendothelial Gap Junctions Intermediate Conductance Calcium-Activated K+ Channel and Nitric Oxide. En: Journal of Pharmacology and Experimental Therapeutics. Vol. 336; No. 3; pp. 701-708; 0022-3565, 1521-0103; Consultado en: 2021/05/16/21:16:58. Disponible en: https://jpet.aspetjournals.org/content/336/3/701. Disponible en: 10.1124/jpet.110.165795.
Maldonado, Oscar; Jenkins, Alexandra; Belalcazar, Helen M.; Hernandez-Cuervo, Helena; Hyman, Katelynn M.; Ladaga, Giannina; Padilla, Lucia; Erausquin, Gabriel A. de (2020) Age-dependent neuroprotective effect of an SK3 channel agonist on excitotoxity to dopaminergic neurons in organotypic culture. En: PLOS ONE. Vol. 15; No. 7; pp. e0223633 1932-6203; Consultado en: 2021/05/16/21:22:09. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223633. Disponible en: 10.1371/journal.pone.0223633.
Spergel, Daniel J. (2007) Calcium and Small-Conductance Calcium-Activated Potassium Channels in Gonadotropin-Releasing Hormone Neurons before, during, and after Puberty. En: Endocrinology. Vol. 148; No. 5; pp. 2383-2390; 0013-7227; Consultado en: 2021/05/16/21:31:39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315592/. Disponible en: 10.1210/en.2006-1693.
Kanawa, Surbhi; Jain, Kalpna; Sagar, Vinod; Yadav, Dinesh K. (2021) Evaluation of changes in corneal endothelium in chronic kidney disease. En: Indian Journal of Ophthalmology. Vol. 69; No. 5; pp. 1080-1083; 0301-4738; Consultado en: 2021/05/17/01:56:10. Disponible en: https://journals.lww.com/ijo/Fulltext/2021/05000/Evaluation_of_changes_in_corneal_endothelium_in.14.aspx. Disponible en: 10.4103/ijo.IJO_1764_20.
Bi, Dan; Toyama, Kazuyoshi; Lemaître, Vincent; Takai, Jun; Fan, Fan; Jenkins, David P.; Wulff, Heike; Gutterman, David D.; Park, Frank; Miura, Hiroto (2013) The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling*. En: Journal of Biological Chemistry. Vol. 288; No. 22; pp. 15843-15853; 0021-9258; Consultado en: 2021/05/18/06:49:21. Disponible en: https://www.sciencedirect.com/science/article/pii/S002192582045971X. Disponible en: 10.1074/jbc.M112.427187.
Manaves, Vlasios; Qin, Wuxuan; Bauer, Amy L.; Rossie, Sandra; Kobayashi, Masakazu; Rane, Stanley G. (2004) Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed. En: BMC Dermatology. Vol. 4; No. 1; pp. 7 1471-5945; Consultado en: 2021/05/18/07:02:24. Disponible en: https://doi.org/10.1186/1471-5945-4-7. Disponible en: 10.1186/1471-5945-4-7.
De Marchi, Umberto; Sassi, Nicola; Fioretti, Bernard; Catacuzzeno, Luigi; Cereghetti, Grazia M.; Szabò, Ildikò; Zoratti, Mario (2009) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. En: Cell Calcium. Vol. 45; No. 5; pp. 509-516; 1532-1991; Disponible en: 10.1016/j.ceca.2009.03.014.
Lee, Elbert L.; Hasegawa, Yuichi; Shimizu, Takahiro; Okada, Yasunobu (2008) IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. En: American Journal of Physiology-Cell Physiology. Vol. 294; No. 6; pp. C1398-C1406; 0363-6143; Consultado en: 2021/05/18/08:01:47. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00428.2007. Disponible en: 10.1152/ajpcell.00428.2007.
Gospodarowicz, Denis; Mescher, Anthony L.; Birdwell, Charles R. (1977) Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factors. En: Experimental Eye Research. Vol. 25; No. 1; pp. 75-89; 0014-4835; Consultado en: 2021/05/18/22:54:42. Disponible en: https://www.sciencedirect.com/science/article/pii/0014483577902482. Disponible en: 10.1016/0014-4835(77)90248-2.
Zhao, Li-Mei; Zhang, Wei; Wang, Li-Ping; Li, Gui-Rong; Deng, Xiu-Ling (2012) Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. En: Pflügers Archiv. Vol. 464; No. 6; pp. 613-621; 1432-2013; Consultado en: 2021/05/18/23:20:56. Disponible en: https://doi.org/10.1007/s00424-012-1165-0. Disponible en: 10.1007/s00424-012-1165-0.
Catacuzzeno, Luigi; Aiello, Francesco; Fioretti, Bernard; Sforna, Luigi; Castigli, Emilia; Ruggieri, Paola; Tata, Ada Maria; Calogero, Antonella; Franciolini, Fabio (2011) Serum-activated K and Cl currents underlay U87-MG glioblastoma cell migration. En: Journal of Cellular Physiology. Vol. 226; No. 7; pp. 1926-1933; 1097-4652; Disponible en: 10.1002/jcp.22523.
Cuddapah, Vishnu Anand; Habela, Christa W.; Watkins, Stacey; Moore, Lindsay S.; Barclay, Tia-Tabitha C.; Sontheimer, Harald (2012) Kinase activation of ClC-3 accelerates cytoplasmic condensation during mitotic cell rounding. En: American Journal of Physiology. Cell Physiology. Vol. 302; No. 3; pp. C527-538; 1522-1563; Disponible en: 10.1152/ajpcell.00248.2011.
Catacuzzeno, Luigi; Franciolini, Fabio (2018) Role of KCa3.1 Channels in Modulating Ca2+ Oscillations during Glioblastoma Cell Migration and Invasion. En: International Journal of Molecular Sciences. Vol. 19; No. 10; pp. 2970 Consultado en: 2021/05/19/01:05:35. Disponible en: https://www.mdpi.com/1422-0067/19/10/2970. Disponible en: 10.3390/ijms19102970.
Gao, Ya-dong; Hanley, Peter J.; Rinné, Susanne; Zuzarte, Marylou; Daut, Jurgen (2010) Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages. En: Cell Calcium. Vol. 48; No. 1; pp. 19-27; 1532-1991; Disponible en: 10.1016/j.ceca.2010.06.002.
Fioretti, Bernard; Catacuzzeno, Luigi; Sforna, Luigi; Aiello, Francesco; Pagani, Francesca; Ragozzino, Davide; Castigli, Emilia; Franciolini, Fabio (2009) Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel. En: American Journal of Physiology. Cell Physiology. Vol. 297; No. 1; pp. C102-110; 1522-1563; Disponible en: 10.1152/ajpcell.00354.2008.
Jakakul, Chanon; Kanjanasirirat, Phongthon; Muanprasat, Chatchai (2021) Development of a Cell-Based Assay for Identifying KCa3.1 Inhibitors Using Intestinal Epithelial Cell Lines. En: SLAS DISCOVERY: Advancing the Science of Drug Discovery. Vol. 26; No. 3; pp. 439-449; 2472-5552; Consultado en: 2021/05/19/01:51:41. Disponible en: https://doi.org/10.1177/2472555220950661. Disponible en: 10.1177/2472555220950661.
Liu, Yu; Zhao, Liang; Ma, Wenya; Cao, Xuefeng; Chen, Hongyang; Feng, Dan; Liang, Jing; Yin, Kun; Jiang, Xiaofeng (2015) The Blockage of KCa3.1 Channel Inhibited Proliferation, Migration and Promoted Apoptosis of Human Hepatocellular Carcinoma Cells. En: Journal of Cancer. Vol. 6; No. 7; pp. 643-651; 1837-9664; Consultado en: 2021/05/19/01:59:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466414/. Disponible en: 10.7150/jca.11913.
Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. En: Immunology Letters. Vol. 171; pp. 60-69; 0165-2478; Consultado en: 2021/05/19/09:30:31. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165247816300128. Disponible en: 10.1016/j.imlet.2016.02.003.
Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. En: Immunology Letters. Vol. 171; pp. 60-69; 0165-2478; Consultado en: 2021/05/19/09:48:32. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165247816300128. Disponible en: 10.1016/j.imlet.2016.02.003.
Aketa, Naohiko; Uchino, Miki; Kawashima, Motoko; Uchino, Yuichi; Yuki, Kenya; Ozawa, Yoko; Sasaki, Mariko; Yamagishi, Kazumasa; Sawada, Norie; Tsugane, Shoichiro; Tsubota, Kazuo; Iso, Hiroyasu (2021) Myopia, corneal endothelial cell density and morphology in a Japanese population-based cross-sectional study: the JPHC-NEXT Eye Study. En: Scientific Reports. Vol. 11; No. 1; pp. 6366 2045-2322; Consultado en: 2021/05/19/23:15:15. Disponible en: https://www.nature.com/articles/s41598-021-85617-4. Disponible en: 10.1038/s41598-021-85617-4.
Cárdenas Díaz, Taimi; Corcho Arévalo, Yeni; Torres Ortega, Rosario; Capote Cabrera, Armando; Hernández López, Iván; Cruz Izquierdo, Dunia (2013) Caracterización del endotelio corneal en pacientes con indicación de cirugía de catarata. En: Revista Cubana de Oftalmología. Vol. 26; No. 1; pp. 39-47; 0864-2176; Consultado en: 2021/05/19/23:15:47. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0864-21762013000100005&lng=es&nrm=iso&tlng=es.
Liu, Cailing; Miyajima, Taiga; Melangath, Geetha; Miyai, Takashi; Vasanth, Shivakumar; Deshpande, Neha; Kumar, Varun; Ong Tone, Stephan; Gupta, Reena; Zhu, Shan; Vojnovic, Dijana; Chen, Yuming; Rogan, Eleanor G.; Mondal, Bodhiswatta; Zahid, Muhammad; Jurkunas, Ula V. (2020) Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 117; No. 1; pp. 573-583; 0027-8424; Consultado en: 2021/05/19/23:16:20. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955350/. Disponible en: 10.1073/pnas.1912546116.
R: The R Project for Statistical Computing. Consultado en: 2021/06/02/17:05:44. Disponible en: https://www.r-project.org/.
Feizi, Sepehr (2018) Corneal endothelial cell dysfunction: etiologies and management. En: Therapeutic Advances in Ophthalmology. Vol. 10; 2515-8414; Consultado en: 2021/06/02/19:50:34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293368/. Disponible en: 10.1177/2515841418815802.
Anbar, Mohamed; Mohamed Mostafa, Engy; Elhawary, Ashraf Mostafa; Awny, Islam; Farouk, Mahmoud Mohamed; Mounir, Amr (2019) Evaluation of Corneal Higher-Order Aberrations by Scheimpflug–Placido Topography in Patients with Different Refractive Errors: A Retrospective Observational Study. En: Journal of Ophthalmology. Vol. 2019; 2090-004X; Consultado en: 2021/06/02/21:52:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589193/. Disponible en: 10.1155/2019/5640356.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Yau, Joanne W. Y.; Rogers, Sophie L.; Kawasaki, Ryo; Lamoureux, Ecosse L.; Kowalski, Jonathan W.; Bek, Toke; Chen, Shih-Jen; Dekker, Jacqueline M.; Fletcher, Astrid; Grauslund, Jakob; Haffner, Steven; Hamman, Richard F.; Ikram, M. Kamran; Kayama, Takamasa; Klein, Barbara E. K.; Klein, Ronald; Krishnaiah, Sannapaneni; Mayurasakorn, Korapat; O'Hare, Joseph P.; Orchard, Trevor J.; Porta, Massimo; Rema, Mohan; Roy, Monique S.; Sharma, Tarun; Shaw, Jonathan; Taylor, Hugh; Tielsch, James M.; Varma, Rohit; Wang, Jie Jin; Wang, Ningli; West, Sheila; Xu, Liang; Yasuda, Miho; Zhang, Xinzhi; Mitchell, Paul; Wong, Tien Y.; Meta-Analysis for Eye Disease (META-EYE) Study Group (2012) Global prevalence and major risk factors of diabetic retinopathy. En: Diabetes Care. Vol. 35; No. 3; pp. 556-564; 1935-5548; Disponible en: 10.2337/dc11-1909.
WHO | Diabetes country profiles 2016. En: WHO. Consultado en: 2018/03/07/15:45:37. Disponible en: http://www.who.int/diabetes/country-profiles/en/.
Powers, Alvin C.; Kasper, Dennis; Fauci, Anthony; Hauser, Stephen; Longo, Dan; Jameson, J. Larry; Loscalzo, Joseph (2015) Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. En: Harrison's Principles of Internal Medicine. New York, NY: McGraw-Hill Education; Consultado en: 2018/03/07/15:41:21. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1120816080.
International Diabetes Federation (2019) IDF Diabetes Atlas. Brussels, Belgium: International Diabetes Federation; Consultado en: 2020/11/03/14:20:44. Disponible en: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf.
Liang, Chun-Chi; Park, Ann Y.; Guan, Jun-Lin (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. En: Nature Protocols. Vol. 2; No. 2; pp. 329-333; 1750-2799; Disponible en: 10.1038/nprot.2007.30.
Srinivas, S. P.; Yeh, J. C.; Ong, A.; Bonanno, J. A. (1998) Ca2+ mobilization in bovine corneal endothelial cells by P2 purinergic receptors. En: Current Eye Research. Vol. 17; No. 10; pp. 994-1004; 0271-3683
Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo (2009) The effects of dexamethasone on the Na,K-ATPase activity and pump function of corneal endothelial cells. En: Current Eye Research. Vol. 34; No. 5; pp. 347-354; 1460-2202; Disponible en: 10.1080/02713680902829624.
Srinivas, Sangly P. (2012) Cell Signaling in Regulation of the Barrier Integrity of the Corneal Endothelium. En: Experimental Eye Research. Vol. 95; No. 1; pp. 8-15; 0014-4835; Consultado en: 2018/03/13/17:08:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271188/. Disponible en: 10.1016/j.exer.2011.09.009.
Mergler, Stefan; Pleyer, Uwe (2007) The human corneal endothelium: new insights into electrophysiology and ion channels. En: Progress in Retinal and Eye Research. Vol. 26; No. 4; pp. 359-378; 1350-9462; Disponible en: 10.1016/j.preteyeres.2007.02.001.
El-Agamy, Amira; Alsubaie, Shams (2017) Corneal endothelium and central corneal thickness changes in type 2 diabetes mellitus. En: Clinical Ophthalmology (Auckland, N.Z.). Vol. 11; pp. 481-486; 1177-5467; Disponible en: 10.2147/OPTH.S126217.
Sudhir, Rachapalle R.; Raman, Rajiv; Sharma, Tarun (2012) Changes in the corneal endothelial cell density and morphology in patients with type 2 diabetes mellitus: a population-based study, Sankara Nethralaya Diabetic Retinopathy and Molecular Genetics Study (SN-DREAMS, Report 23). En: Cornea. Vol. 31; No. 10; pp. 1119-1122; 1536-4798; Disponible en: 10.1097/ICO.0b013e31823f8e00.
Ljubimov, Alexander V. (2017) Diabetic complications in the cornea. En: Vision Research. Diabetic Retinopathy; Vol. 139; pp. 138-152; 0042-6989; Consultado en: 2018/03/13/16:51:28. Disponible en: http://www.sciencedirect.com/science/article/pii/S0042698917300470. Disponible en: 10.1016/j.visres.2017.03.002.
Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D. (2012) Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. En: American Journal of Human Genetics. Vol. 90; No. 3; pp. 533-539; 1537-6605; Disponible en: 10.1016/j.ajhg.2012.01.013.
Loganathan, Sampath K.; Schneider, Hans-Peter; Morgan, Patricio E.; Deitmer, Joachim W.; Casey, Joseph R. (2016) Functional assessment of SLC4A11, an integral membrane protein mutated in corneal dystrophies. En: American Journal of Physiology-Cell Physiology. Vol. 311; No. 5; pp. C735-C748; 0363-6143; Consultado en: 2018/03/13/16:43:25. Disponible en: https://www.physiology.org/doi/abs/10.1152/ajpcell.00078.2016. Disponible en: 10.1152/ajpcell.00078.2016.
Hopfer, Ulrike; Fukai, Naomi; Hopfer, Helmut; Wolf, Gunter; Joyce, Nancy; Li, En; Olsen, Bjorn R. (2005) Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. En: FASEB journal: official publication of the Federation of American Societies for Experimental Biology. Vol. 19; No. 10; pp. 1232-1244; 1530-6860; Disponible en: 10.1096/fj.04-3019com.
Jurkunas, Ula V.; Bitar, Maya S.; Funaki, Toshinari; Azizi, Behrooz (2010) Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. En: The American Journal of Pathology. Vol. 177; No. 5; pp. 2278-2289; 1525-2191; Disponible en: 10.2353/ajpath.2010.100279.
Jurkunas, Ula V.; Rawe, Ian; Bitar, Maya S.; Zhu, Cheng; Harris, Deshea L.; Colby, Kathryn; Joyce, Nancy C. (2008) Decreased expression of peroxiredoxins in Fuchs' endothelial dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 49; No. 7; pp. 2956-2963; 1552-5783; Disponible en: 10.1167/iovs.07-1529.
Baratz, Keith H.; Tosakulwong, Nirubol; Ryu, Euijung; Brown, William L.; Branham, Kari; Chen, Wei; Tran, Khoa D.; Schmid-Kubista, Katharina E.; Heckenlively, John R.; Swaroop, Anand; Abecasis, Goncalo; Bailey, Kent R.; Edwards, Albert O. (2010) E2-2 protein and Fuchs's corneal dystrophy. En: The New England Journal of Medicine. Vol. 363; No. 11; pp. 1016-1024; 1533-4406; Disponible en: 10.1056/NEJMoa1007064.
Kim, Eun Chul; Toyono, Tetsuya; Berlinicke, Cynthia A.; Zack, Donald J.; Jurkunas, Ula; Usui, Tomohiko; Jun, Albert S. (2017) Screening and Characterization of Drugs That Protect Corneal Endothelial Cells Against Unfolded Protein Response and Oxidative Stress. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 2; pp. 892-900; 0146-0404; Consultado en: 2018/03/13/16:30:52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295784/. Disponible en: 10.1167/iovs.16-20147.
Vedana, Gustavo; Villarreal, Guadalupe; Jun, Albert S (2016) Fuchs endothelial corneal dystrophy: current perspectives. En: Clinical Ophthalmology (Auckland, N.Z.). Vol. 10; pp. 321-330; 1177-5467; Consultado en: 2018/03/13/16:29:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762439/. Disponible en: 10.2147/OPTH.S83467.
Xia, Dan; Zhang, Shuai; Nielsen, Esben; Ivarsen, Anders Ramløv; Liang, Chunyong; Li, Qiang; Thomsen, Karen; Hjortdal, Jesper Østergaard; Dong, Mingdong (2016) The Ultrastructures and Mechanical Properties of the Descement’s Membrane in Fuchs Endothelial Corneal Dystrophy. En: Scientific Reports. Vol. 6; pp. 23096 2045-2322; Consultado en: 2018/03/13/16:27:02. Disponible en: https://www.nature.com/articles/srep23096. Disponible en: 10.1038/srep23096.
Shenoy, Radha; Khandekar, Rajeev; Bialasiewicz, Alexander; Al Muniri, Abdullah (2009) Corneal endothelium in patients with diabetes mellitus: a historical cohort study. En: European Journal of Ophthalmology. Vol. 19; No. 3; pp. 369-375; 1120-6721
Larsson, L. I.; Bourne, W. M.; Pach, J. M.; Brubaker, R. F. (1996) Structure and function of the corneal endothelium in diabetes mellitus type I and type II. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 114; No. 1; pp. 9-14; 0003-9950
Takahashi, Hiroshi; Akiba, Kiyoshi; Noguchi, Takayasu; Ohmura, Takeo; Takahashi, Ryoki; Ezure, Youji; Ohara, Kunitoshi; Zieske, James D. (2000) Matrix metalloproteinase activity is enhanced during corneal wound repair in high glucose condition. En: Current Eye Research. Vol. 21; No. 2; pp. 608-615; 0271-3683; Consultado en: 2018/03/13/11:27:30. Disponible en: https://www.tandfonline.com/doi/abs/10.1076/0271-3683%28200008%292121-VFT608. Disponible en: 10.1076/0271-3683(200008)2121-VFT608.
Matsuda, Mamoru; Awata, Takashi; Ohashi, Yuichi; Inaba, Masamaru; Fukuda, Masakatsu; Manabe, Reizo (1987) The effects of aldose reductase inhibitor on the corneal endothelial morphology in diabetic rats. En: Current Eye Research. Vol. 6; No. 2; pp. 391-397; 0271-3683; Consultado en: 2018/03/13/11:25:01. Disponible en: https://doi.org/10.3109/02713688709025192. Disponible en: 10.3109/02713688709025192.
Srivastava, Satish K; Yadav, Umesh C S; Reddy, Aramati BM; Saxena, Ashish; Tammali, Ravinder; Mohammad, Shoeb; Ansari, Naseem H; Bhatnagar, Aruni; Petrash, Mark J; Srivastava, Sanjay; Ramana, Kota V (2011) Aldose Reductase Inhibition Suppresses Oxidative Stress-Induced Inflammatory Disorders. En: Chemico-biological interactions. Vol. 191; No. 1-3; pp. 330-338; 0009-2797; Consultado en: 2018/03/13/11:23:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103634/. Disponible en: 10.1016/j.cbi.2011.02.023.
Hasan, S. Akbar (2010) The Cornea in Diabetes Mellitus. En: Diabetic Retinopathy. pp. 347-355; Springer, New York, NY; 978-0-387-85899-9 978-0-387-85900-2; Consultado en: 2018/03/13/11:21:29. Disponible en: https://link.springer.com/chapter/10.1007/978-0-387-85900-2_12.
Sagoo, Pervinder; Chan, Giulia; Larkin, Daniel F. P.; George, Andrew J. T. (2004) Inflammatory cytokines induce apoptosis of corneal endothelium through nitric oxide. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 11; pp. 3964-3973; 0146-0404; Disponible en: 10.1167/iovs.04-0439.
Apoptosis in the Endothelium of Human Corneas for Transplantation | IOVS | ARVO Journals. Consultado en: 2018/03/13/10:56:53. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2123710.
Haeberlein, S. L. (2004) Mitochondrial function in apoptotic neuronal cell death. En: Neurochemical research. Vol. 29; No. 3; pp. 521-530; 0364-3190; Consultado en: 2018/03/13/10:52:41. Disponible en: http://europepmc.org/abstract/med/15038600. Disponible en: 10.1023/B:NERE.0000014823.74782.b7.
Umapathy, Ankita; Donaldson, Paul; Lim, Julie (2013) Antioxidant Delivery Pathways in the Anterior Eye. En: BioMed Research International. Consultado en: 2018/03/13/10:44:40. Disponible en: https://www.hindawi.com/journals/bmri/2013/207250/.
Diecke, Friedrich P. J.; Ma, Li; Iserovich, Pavel; Fischbarg, Jorge (2007) Corneal endothelium transports fluid in the absence of net solute transport. En: Biochimica et Biophysica Acta (BBA). Vol. 1768; No. 9; pp. 2043-2048; 0005-2736; Consultado en: 2018/03/13/09:24:30. Disponible en: http://www.sciencedirect.com/science/article/pii/S0005273607001800. Disponible en: 10.1016/j.bbamem.2007.05.020.
Cuadrado Escamilla, José Luis (2009) Estudio anatomo-clínico y epidemiológico de la queratitis laminar difusa como complicación postquirúrgica de la fotoqueratomileusis (lasik). Valencia: Universitat de València, Servei de Publicacions
Hu, Rebecca G.; Zhu, Yuan; Donaldson, Paul; Kalloniatis, Michael (2012) Alterations of Glutamate, Glutamine, and Related Amino Acids in the Anterior Eye Secondary to Ischaemia and Reperfusion. En: Current Eye Research. Vol. 37; No. 7; pp. 633-643; 0271-3683; Consultado en: 2018/03/13/09:09:11. Disponible en: https://doi.org/10.3109/02713683.2012.669509. Disponible en: 10.3109/02713683.2012.669509.
Mergler, Stefan; Pleyer, Uwe; Reinach, Peter; Bednarz, Jürgen; Dannowski, Haike; Engelmann, Katrin; Hartmann, Christian; Yousif, Tarik (2005) EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells. En: Experimental Eye Research. Vol. 80; No. 2; pp. 285-293; 0014-4835; Disponible en: 10.1016/j.exer.2004.09.012.
Zhang, Wenlin; Li, Hongde; Ogando, Diego G.; Li, Shimin; Feng, Matthew; Price, Francis W.; Tennessen, Jason M.; Bonanno, Joseph A. (2017) Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium. En: EBioMedicine. Vol. 16; pp. 292-301; 2352-3964; Disponible en: 10.1016/j.ebiom.2017.01.004.
Harvitt, D. M.; Bonanno, J. A. (1998) Oxygen consumption of the rabbit cornea. En: Investigative Ophthalmology & Visual Science. Vol. 39; No. 2; pp. 444-448; 1552-5783; Consultado en: 2018/03/13/08:47:43. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2181302.
Wojcik, Katarzyna A.; Kaminska, Anna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P. (2013) Oxidative Stress in the Pathogenesis of Keratoconus and Fuchs Endothelial Corneal Dystrophy. En: International Journal of Molecular Sciences. Vol. 14; No. 9; pp. 19294-19308; 1422-0067; Consultado en: 2018/03/13/04:51:53. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794834/. Disponible en: 10.3390/ijms140919294.
Bourne, W. M. (2003) Biology of the corneal endothelium in health and disease. En: Eye (London, England). Vol. 17; No. 8; pp. 912-918; 0950-222X; Disponible en: 10.1038/sj.eye.6700559.
Lázaro, C. García; Castillo, A. Gómez; García, J. Feijóo; Macías, JM Benítez; García, J. Sánchez (2000) [Study of the corneal endothelium after glaucoma surgery]. En: Archivos de la Sociedad Espanola de Oftalmologia. Vol. 75; No. 2; pp. 75-80; 0365-6691; Consultado en: 2018/03/13/02:12:49. Disponible en: http://europepmc.org/abstract/med/11151123.
Murano, Nao; Ishizaki, Masamichi; Sato, Shigeru; Fukuda, Yuh; Takahashi, Hiroshi (2008) Corneal endothelial cell damage by free radicals associated with ultrasound oscillation. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 126; No. 6; pp. 816-821; 1538-3601; Disponible en: 10.1001/archopht.126.6.816.
Bonanno, Joseph A. (2003) Identity and regulation of ion transport mechanisms in the corneal endothelium. En: Progress in Retinal and Eye Research. Vol. 22; No. 1; pp. 69-94; 1350-9462
Remington, Lee Ann (2011) Clinical Anatomy of the Visual System E-Book. pp. 303 : Elsevier Health Sciences; 978-1-4557-2777-3
Wörner, Carlos H.; Olguín, Alicia; Ruíz-García, José L.; Garzón-Jiménez, Nuria (2011) Cell Pattern in Adult Human Corneal Endothelium. En: PLOS ONE. Vol. 6; No. 5; pp. e19483 1932-6203; Consultado en: 2018/03/11/16:58:12. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019483. Disponible en: 10.1371/journal.pone.0019483.
Liesegang, Thomas J. (2002) Physiologic changes of the cornea with contact lens wear. En: The CLAO journal: official publication of the Contact Lens Association of Ophthalmologists, Inc. Vol. 28; No. 1; pp. 12-27; 0733-8902
Standring, Susan (2016) Gray's anatomy : the anatomical basis of clinical practice. United States: New York : Elsevier Limited; 9780702052309 (main edition) 9780702063060 (international edition paperback) 9780702068515 (PDF, EPUB) 9780702068522 (Inkling interactive ebook)
Chen, Edwin S.; Terry, Mark A.; Shamie, Neda; Hoar, Karen L.; Friend, Daniel J. (2008) Descemet-stripping automated endothelial keratoplasty: six-month results in a prospective study of 100 eyes. En: Cornea. Vol. 27; No. 5; pp. 514-520; 1536-4798; Disponible en: 10.1097/ICO.0b013e3181611c50.
Murphy, C.; Alvarado, J.; Juster, R.; Maglio, M. (1984) Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. En: Investigative Ophthalmology & Visual Science. Vol. 25; No. 3; pp. 312-322; 0146-0404
Li, Q. J.; Ashraf, M. F.; Shen, D. F.; Green, W. R.; Stark, W. J.; Chan, C. C.; O'Brien, T. P. (2001) The role of apoptosis in the pathogenesis of Fuchs endothelial dystrophy of the cornea. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 119; No. 11; pp. 1597-1604; 0003-9950
Módis, László; Szalai, Eszter; Kertész, Katalin; Kemény-Beke, Adám; Kettesy, Beáta; Berta, András (2010) Evaluation of the corneal endothelium in patients with diabetes mellitus type I and II. En: Histology and Histopathology. Vol. 25; No. 12; pp. 1531-1537; 1699-5848; Disponible en: 10.14670/HH-25.1531.
Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh (2015) Progress in corneal wound healing. En: Progress in Retinal and Eye Research. Vol. 49; pp. 17-45; 1873-1635; Disponible en: 10.1016/j.preteyeres.2015.07.002.
Skarbez, Kathryn; Priestley, Yos; Hoepf, Marcia; Koevary, Steven B. (2010) Comprehensive Review of the Effects of Diabetes on Ocular Health. En: Expert review of ophthalmology. Vol. 5; No. 4; pp. 557-577; 1746-9899; Consultado en: 2018/03/07/16:34:08. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134329/. Disponible en: 10.1586/eop.10.44.
Kampik, D.; Ali, R. R.; Larkin, D. F. P. (2012) Experimental gene transfer to the corneal endothelium. En: Experimental Eye Research. Vol. 95; No. 1; pp. 54-59; 1096-0007; Disponible en: 10.1016/j.exer.2011.07.001.
Lwigale, Peter Y.; Bronner-Fraser, Marianne (2009) Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development. En: Developmental biology. Vol. 336; No. 2; pp. 257-265; 0012-1606; Consultado en: 2018/04/12/12:59:21. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800376/. Disponible en: 10.1016/j.ydbio.2009.10.008.
Zieske, James D. (2004) Corneal development associated with eyelid opening. En: International Journal of Developmental Biology. Vol. 48; No. 8-9; pp. 903-911; 0214-6282, 1696-3547; Consultado en: 2018/04/12/12:46:08. Disponible en: http://www.ijdb.ehu.es/web/paper/041860jz. Disponible en: 10.1387/ijdb.041860jz.
Voltage-dependent calcium channel, L-type, alpha-1 subunit (IPR005446) < InterPro < EMBL-EBI. Consultado en: 2018/05/29/13:18:43. Disponible en: http://www.ebi.ac.uk/interpro/entry/IPR005446.
Kurtenbach, Sarah; Kurtenbach, Stefan; Zoidl, Georg (2014) Emerging functions of pannexin 1 in the eye. En: Frontiers in Cellular Neuroscience. Vol. 8; 1662-5102; Consultado en: 2018/05/29/05:00:47. Disponible en: https://www.frontiersin.org/articles/10.3389/fncel.2014.00263/full. Disponible en: 10.3389/fncel.2014.00263.
Anumanthan, Govindaraj; Gupta, Suneel; Fink, Michael K.; Hesemann, Nathan P.; Bowles, Douglas K.; McDaniel, Lindsey M.; Muhammad, Maaz; Mohan, Rajiv R. (2018) KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis. En: PloS One. Vol. 13; No. 3; pp. e0192145 1932-6203; Disponible en: 10.1371/journal.pone.0192145.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 4; pp. 2020-2029; 1552-5783; Consultado en: 2018/05/29/02:25:41. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2188361. Disponible en: 10.1167/iovs.12-9475.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 4; pp. 2020-2029; 0146-0404; Consultado en: 2018/05/29/02:25:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995573/. Disponible en: 10.1167/iovs.12-9475.
Watsky, M. A.; Cooper, K.; Rae, J. L. (1992) Transient outwardly rectifying potassium channel in the rabbit corneal endothelium. En: The Journal of Membrane Biology. Vol. 128; No. 2; pp. 123-132; 0022-2631
Yang, Dongli; MacCallum, Donald K.; Ernst, Stephen A.; Hughes, Bret A. (2003) Expression of the Inwardly Rectifying K+ Channel Kir2.1 in Native Bovine Corneal Endothelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 44; No. 8; pp. 3511-3519; 1552-5783; Consultado en: 2018/05/28/15:10:58. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2200243. Disponible en: 10.1167/iovs.02-1306.
Kew, James N. C.; Davies, Ceri H. (2010) Ion Channels: From Structure to Function. pp. 586 : Oxford University Press; 978-0-19-929675-0
Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux | American Journal of Physiology-Cell Physiology. Consultado en: 2018/05/28/03:18:04. Disponible en: https://www.physiology.org/doi/abs/10.1152/ajpcell.00095.2016?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed.
Lactate-H+ Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. Consultado en: 2018/05/28/02:21:01. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995573/.
Huang, Hai; Pugsley, Michael K.; Fermini, Bernard; Curtis, Michael J.; Koerner, John; Accardi, Michael; Authier, Simon (2017) Cardiac voltage-gated ion channels in safety pharmacology: Review of the landscape leading to the CiPA initiative. En: Journal of Pharmacological and Toxicological Methods. Focused Issue on Safety Pharmacology; Vol. 87; pp. 11-23; 1056-8719; Consultado en: 2018/05/27/16:08:52. Disponible en: http://www.sciencedirect.com/science/article/pii/S1056871917300825. Disponible en: 10.1016/j.vascn.2017.04.002.
Wulff, Heike; Castle, Neil A.; Pardo, Luis A. (2009) Voltage-gated potassium channels as therapeutic targets. En: Nature Reviews. Drug Discovery. Vol. 8; No. 12; pp. 982-1001; 1474-1784; Disponible en: 10.1038/nrd2983.
Rae, J. L.; Shepard, A. R. (2000) Kv3.3 potassium channels in lens epithelium and corneal endothelium. En: Experimental Eye Research. Vol. 70; No. 3; pp. 339-348; 0014-4835; Disponible en: 10.1006/exer.1999.0796.
Rudy, B.; Maffie, J.; Amarillo, Y.; Clark, B.; Goldberg, E. M.; Jeong, H.-Y.; Kruglikov, I.; Kwon, E.; Nadal, M.; Zagha, E.; Squire, Larry R. (2009) Voltage Gated Potassium Channels: Structure and Function of Kv1 to Kv9 Subfamilies. En: Encyclopedia of Neuroscience. pp. 397-425; Oxford: Academic Press; 978-0-08-045046-9; Consultado en: 2018/05/27/04:00:30. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780080450469016302.
Voltage-gated potassium channels | Introduction | BPS/IUPHAR Guide to PHARMACOLOGY. Consultado en: 2018/05/25/13:47:52. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=81.
Grizel, A. V.; Glukhov, G. S.; Sokolova, O. S. (2014) Mechanisms of Activation of Voltage-Gated Potassium Channels. En: Acta Naturae. Vol. 6; No. 4; pp. 10-26; 2075-8251; Consultado en: 2018/05/24/19:53:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273088/.
Joyce, Nancy C.; Harris, Deshea L. (2010) Decreasing expression of the G1-phase inhibitors, p21Cip1 and p16INK4a, promotes division of corneal endothelial cells from older donors. En: Molecular Vision. Vol. 16; pp. 897-906; 1090-0535
Rae, J. L.; Watsky, M. A. (1996) Ionic channels in corneal endothelium. En: The American Journal of Physiology. Vol. 270; No. 4 Pt 1; pp. C975-989; 0002-9513; Disponible en: 10.1152/ajpcell.1996.270.4.C975.
Yu, Frank H; Catterall, William A (2003) Overview of the voltage-gated sodium channel family. En: Genome Biology. Vol. 4; No. 3; pp. 207 1465-6906; Consultado en: 2018/05/21/13:23:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153452/.
Chhabra, Mahendra; Prausnitz, John M.; Radke, Clayton J. (2009) Modeling corneal metabolism and oxygen transport during contact lens wear. En: Optometry and Vision Science: Official Publication of the American Academy of Optometry. Vol. 86; No. 5; pp. 454-466; 1538-9235; Disponible en: 10.1097/OPX.0b013e31819f9e70.
Li, Shimin; Allen, Kah Tan; Bonanno, Joseph A. (2011) Soluble adenylyl cyclase mediates bicarbonate-dependent corneal endothelial cell protection. En: American Journal of Physiology. Cell Physiology. Vol. 300; No. 2; pp. C368-374; 1522-1563; Disponible en: 10.1152/ajpcell.00314.2010.
Sun, Xing Cai; Zhai, Chang-Bin; Cui, Miao; Chen, Yanqiu; Levin, Lonny R.; Buck, Jochen; Bonanno, Joseph A. (2003) HCO(3)(-)-dependent soluble adenylyl cyclase activates cystic fibrosis transmembrane conductance regulator in corneal endothelium. En: American Journal of Physiology. Cell Physiology. Vol. 284; No. 5; pp. C1114-1122; 0363-6143; Disponible en: 10.1152/ajpcell.00400.2002.
Rauz, Saaeha; Walker, Elizabeth A.; Murray, Philip I.; Stewart, Paul M. (2003) Expression and distribution of the serum and glucocorticoid regulated kinase and the epithelial sodium channel subunits in the human cornea. En: Experimental Eye Research. Vol. 77; No. 1; pp. 101-108; 0014-4835
Sánchez, J. M.; Li, Y.; Rubashkin, A.; Iserovich, P.; Wen, Q.; Ruberti, J. W.; Smith, R. W.; Rittenband, D.; Kuang, K.; Diecke, F. P. J.; Fischbarg, J. (2002) Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium. En: The Journal of Membrane Biology. Vol. 187; No. 1; pp. 37-50; 0022-2631; Disponible en: 10.1007/s00232-001-0151-9.
Fischbarg, Jorge (2010) Fluid Transport Across Leaky Epithelia: Central Role of the Tight Junction and Supporting Role of Aquaporins. En: Physiological Reviews. Vol. 90; No. 4; pp. 1271-1290; 0031-9333; Consultado en: 2018/05/17/20:38:47. Disponible en: https://www.physiology.org/doi/abs/10.1152/physrev.00025.2009. Disponible en: 10.1152/physrev.00025.2009.
Riley, M. V.; Winkler, B. S.; Starnes, C. A.; Peters, M. I. (1997) Fluid and ion transport in corneal endothelium: insensitivity to modulators of Na(+)-K(+)-2Cl-cotransport. En: The American Journal of Physiology. Vol. 273; No. 5 Pt 1; pp. C1480-1486; 0002-9513
Diecke, Friedrich P.; Wen, Quan; Iserovich, Pavel; Li, Jianfeng; Kuang, Kunyan; Fischbarg, Jorge (2005) Regulation of Na-K-2Cl cotransport in cultured bovine corneal endothelial cells. En: Experimental Eye Research. Vol. 80; No. 6; pp. 777-785; 0014-4835; Disponible en: 10.1016/j.exer.2004.12.008.
Watsky, M. A.; Rae, J. L. (1991) Resting voltage measurements of the rabbit corneal endothelium using patch-current clamp techniques. En: Investigative Ophthalmology & Visual Science. Vol. 32; No. 1; pp. 106-111; 0146-0404
Zhang, Wenlin; Ogando, Diego G.; Bonanno, Joseph A.; Obukhov, Alexander G. (2015) Human SLC4A11 Is a Novel NH3/H+ Co-transporter. En: The Journal of Biological Chemistry. Vol. 290; No. 27; pp. 16894-16905; 1083-351X; Disponible en: 10.1074/jbc.M114.627455.
Bonanno, Joseph A. (2012) Molecular Mechanisms Underlying the Corneal Endothelial Pump. En: Experimental Eye Research. Vol. 95; No. 1; pp. 2-7; 0014-4835; Consultado en: 2018/05/09/04:12:43. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199349/. Disponible en: 10.1016/j.exer.2011.06.004.
Redbrake, C.; Salla, S.; Frantz, A.; Reim, M. (1999) Metabolic changes of the human donor cornea during organ-culture. En: Acta Ophthalmologica Scandinavica. Vol. 77; No. 3; pp. 266-272; 1395-3907
Reim, M.; Lax, F.; Lichte, H.; Turss, R. (1967) Steady State Levels of Glucose in the Different Layers of the Cornea, Aqueous Humor, Blood and Tears in vivo. En: Ophthalmologica. Vol. 154; No. 1; pp. 39-50; 0030-3755, 1423-0267; Consultado en: 2018/05/08/20:19:19. Disponible en: https://www.karger.com/Article/FullText/305147. Disponible en: 10.1159/000305147.
Kumagai, A. K.; Glasgow, B. J.; Pardridge, W. M. (1994) GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. En: Investigative Ophthalmology & Visual Science. Vol. 35; No. 6; pp. 2887-2894; 0146-0404
Verkman, AS (2002) Aquaporin water channels and endothelial cell function. En: Journal of Anatomy. Vol. 200; No. 6; pp. 617-627; 0021-8782; Consultado en: 2018/05/08/19:17:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1570747/. Disponible en: 10.1046/j.1469-7580.2002.00058.x.
Kuang, Kunyan; Yiming, Maimaiti; Wen, Quan; Li, Yansui; Ma, Li; Iserovich, Pavel; Verkman, A. S.; Fischbarg, Jorge (2004) Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice. En: Experimental Eye Research. Vol. 78; No. 4; pp. 791-798; 0014-4835; Disponible en: 10.1016/j.exer.2003.11.017.
Mendez, M. G.; Restle, D.; Janmey, P. A. (2014) Vimentin enhances cell elastic behavior and protects against compressive stress. En: Biophysical Journal. Vol. 107; No. 2; pp. 314-323; 1542-0086; Disponible en: 10.1016/j.bpj.2014.04.050.
He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles (2016) 3D map of the human corneal endothelial cell. En: Scientific Reports. Vol. 6; pp. 29047 2045-2322; Consultado en: 2018/05/07/18:57:20. Disponible en: https://www.nature.com/articles/srep29047. Disponible en: 10.1038/srep29047.
Hejtmancik, J. Fielding; Nickerson, John M. (2015) Molecular Biology of Eye Disease. pp. 573 : Academic Press; 978-0-12-801267-3
Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016) Chapter 1. En: The Eye (Fourth Edition). pp. 1-102.e2; W.B. Saunders; 978-0-7020-5554-6; Consultado en: 2018/05/03/02:38:01. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780702055546000010.
Chang, Hui; Ma, Yu-Guang; Wang, Yun-Ying; Song, Zhen; Li, Quan; Yang, Ning; Zhao, Hua-Zhou; Feng, Han-Zhong; Chang, Yao-Ming; Ma, Jin; Yu, Zhi-Bin; Xie, Man-Jiang (2011) High glucose alters apoptosis and proliferation in HEK293 cells by inhibition of cloned BKCa channel. En: Journal of Cellular Physiology. Vol. 226; No. 6; pp. 1660-1675; 1097-4652; Consultado en: 2018/05/03/02:07:35. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.22497. Disponible en: 10.1002/jcp.22497.
Stepp, Mary Ann (2006) Corneal integrins and their functions. En: Experimental Eye Research. Vol. 83; No. 1; pp. 3-15; 0014-4835; Disponible en: 10.1016/j.exer.2006.01.010.
Fernández, A.; Moreno, J.; Prósper, F.; García, M.; Echeveste, J. (2008) Regeneración de la superficie ocular: stem cells/células madre y técnicas reconstructivas. En: Anales del Sistema Sanitario de Navarra. Vol. 31; No. 1; pp. 53-69; 1137-6627; Consultado en: 2018/05/02/14:27:44. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1137-66272008000100005&lng=es&nrm=iso&tlng=es.
Goel, Manik; Picciani, Renata G; Lee, Richard K; Bhattacharya, Sanjoy K (2010) Aqueous Humor Dynamics: A Review. En: The Open Ophthalmology Journal. Vol. 4; pp. 52-59; 1874-3641; Consultado en: 2018/05/02/03:36:27. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032230/. Disponible en: 10.2174/1874364101004010052.
Dawson, D G.; John L. U; Henry F. Edelhauser (2011) Cornea and Sclera. En: Adler's Physiology of the Eye.: W B Saunders Company; 978-0-323-05714-1 978-0-323-08116-0; Consultado en: 2018/05/02/02:21:35. Disponible en: https://www.elsevier.com/books/adlers-physiology-of-the-eye/levin/978-0-323-05714-1.
Güell, J. L. (2015) Cornea. pp. 138 : Karger Medical and Scientific Publishers; 978-3-318-05453-8
Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016) Chapter 4. En: The Eye (Fourth Edition). pp. 157-268.e4; W.B. Saunders; 978-0-7020-5554-6; Consultado en: 2018/05/01/23:26:43. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780702055546000046.
Untitled Document. Consultado en: 2018/05/01/22:20:36. Disponible en: http://med.javeriana.edu.co/oftalmologia/materiales/refraccion.htm.
Mannis, Mark J.; Holland, Edward J. (2016) Cornea E-Book. pp. 2189 : Elsevier Health Sciences; 978-0-323-35758-6
Williams, K. Keven; Noe, Robin L.; Grossniklaus, Hans E.; Drews-Botsch, Carolyn; Edelhauser, Henry F. (1992) Correlation of Histologic Corneal Endothelial Cell Counts With Specular Microscopic Cell Density. En: Archives of Ophthalmology. Vol. 110; No. 8; pp. 1146-1149; 0003-9950; Consultado en: 2018/05/01/20:44:16. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/639808. Disponible en: 10.1001/archopht.1992.01080200126039.
Zhang, Xue; Zeng, Xuhui; Xia, Xiao-Ming; Lingle, Christopher J. (2006) pH-regulated Slo3 K+ Channels: Properties of Unitary Currents. En: The Journal of General Physiology. Vol. 128; No. 3; pp. 301-315; 0022-1295; Consultado en: 2018/04/30/23:27:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151565/. Disponible en: 10.1085/jgp.200609551.
Du, Jintang; Aleff, Ross A.; Soragni, Elisabetta; Kalari, Krishna; Nie, Jinfu; Tang, Xiaojia; Davila, Jaime; Kocher, Jean-Pierre; Patel, Sanjay V.; Gottesfeld, Joel M.; Baratz, Keith H.; Wieben, Eric D. (2015) RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. En: The Journal of Biological Chemistry. Vol. 290; No. 10; pp. 5979-5990; 1083-351X; Disponible en: 10.1074/jbc.M114.621607.
Chung, Doug D.; Frausto, Ricardo F.; Lin, Benjamin R.; Hanser, Evelyn M.; Cohen, Zack; Aldave, Anthony J. (2017) Transcriptomic Profiling of Posterior Polymorphous Corneal Dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 7; pp. 3202-3214; 1552-5783; Disponible en: 10.1167/iovs.17-21423.
Chen, Yinyin; Huang, Kevin; Nakatsu, Martin N.; Xue, Zhigang; Deng, Sophie X.; Fan, Guoping (2013) Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells. En: Human Molecular Genetics. Vol. 22; No. 7; pp. 1271-1279; 1460-2083; Disponible en: 10.1093/hmg/dds527.
Griffith, May; Osborne, Rosemarie; Munger, Rejean; Xiong, Xiaojuan; Doillon, Charles J.; Laycock, Noelani L. C.; Hakim, Malik; Song, Ying; Watsky, Mitchell A. (1999) Functional Human Corneal Equivalents Constructed from Cell Lines. En: Science. Vol. 286; No. 5447; pp. 2169-2172; 0036-8075, 1095-9203; Consultado en: 2018/04/30/22:59:12. Disponible en: http://science.sciencemag.org/content/286/5447/2169. Disponible en: 10.1126/science.286.5447.2169.
Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi; Donev, Rossen (2016) Chapter Six. En: Advances in Protein Chemistry and Structural Biology. Ion channels as therapeutic targets, part B; Vol. 104; pp. 233-261; Academic Press; Consultado en: 2018/04/30/22:55:31. Disponible en: http://www.sciencedirect.com/science/article/pii/S1876162315000954.
Kaczmarek, Leonard K. (2013) Slack, Slick, and Sodium-Activated Potassium Channels. En: International Scholarly Research Notices. Consultado en: 2018/04/30/02:28:23. Disponible en: https://www.hindawi.com/journals/isrn/2013/354262/.
Eghrari, Allen O.; Riazuddin, S. Amer; Gottsch, John D. (2015) Overview of the Cornea: Structure, Function, and Development. En: Progress in Molecular Biology and Translational Science. Vol. 134; pp. 7-23; 1877-1173; Consultado en: 2018/04/16/22:32:47. Disponible en: https://jhu.pure.elsevier.com/en/publications/overview-of-the-cornea-structure-function-and-development-8. Disponible en: 10.1016/bs.pmbts.2015.04.001.
Kaji, Yuichi; Amano, Shiro; Usui, Tomohiko; Oshika, Tetsuro; Yamashiro, Kenji; Ishida, Susumu; Suzuki, Kaori; Tanaka, Sumiyoshi; Adamis, Anthony P.; Nagai, Ryoji; Horiuchi, Seiko (2003) Expression and function of receptors for advanced glycation end products in bovine corneal endothelial cells. En: Investigative Ophthalmology & Visual Science. Vol. 44; No. 2; pp. 521-528; 0146-0404
Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Jeong, Il-Ha; Kim, Hyojun; Kim, Jin Sook (2011) Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy. En: Graefe's Archive for Clinical and Experimental Ophthalmology. Vol. 249; No. 4; pp. 529-536; 0721-832X, 1435-702X; Consultado en: 2018/11/02/15:41:51. Disponible en: http://link.springer.com/10.1007/s00417-010-1573-9. Disponible en: 10.1007/s00417-010-1573-9.
Aldrich, Benjamin T.; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M.; Burckart, Kimberlee A.; Schmidt, Gregory A.; Reed, Cynthia R.; Zimmerman, M. Bridget; Kruse, Friedrich E.; Greiner, Mark A. (2017) Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus. En: Investigative Opthalmology & Visual Science. Vol. 58; No. 4; pp. 2130 1552-5783; Consultado en: 2018/11/02/15:06:59. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-21094. Disponible en: 10.1167/iovs.16-21094.
Chloride channels | Ion channels | IUPHAR/BPS Guide to PHARMACOLOGY. Consultado en: 2018/10/27/04:00:14. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=120.
(2009) Chloride channels. En: British Journal of Pharmacology. Vol. 158; No. Suppl 1; pp. S130-S134; 0007-1188; Consultado en: 2018/10/27/02:52:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884561/. Disponible en: 10.1111/j.1476-5381.2009.00503_6.x.
Stauber, Tobias; Novarino, Gaia; Jentsch, Thomas J.; Alvarez-Leefmans, F. Javier; Delpire, Eric (2010) Chapter 12. En: Physiology and Pathology of Chloride Transporters and Channels in the Nervous System. pp. 209-231; San Diego: Academic Press; 978-0-12-374373-2; Consultado en: 2018/10/27/02:29:02. Disponible en: http://www.sciencedirect.com/science/article/pii/B9780123743732000121.
Storr-Paulsen, Allan; Singh, Amardeep; Jeppesen, Helene; Norregaard, Jens C.; Thulesen, Jesper (2014) Corneal endothelial morphology and central thickness in patients with type II diabetes mellitus. En: Acta Ophthalmologica. Vol. 92; No. 2; pp. 158-160; 1755375X; Consultado en: 2018/10/22/21:33:23. Disponible en: http://doi.wiley.com/10.1111/aos.12064. Disponible en: 10.1111/aos.12064.
Gees, Maarten; Colsoul, Barbara; Nilius, Bernd (2010) The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling. En: Cold Spring Harbor Perspectives in Biology. Vol. 2; No. 10; 1943-0264; Consultado en: 2018/10/18/22:04:51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944357/. Disponible en: 10.1101/cshperspect.a003962.
Mergler, Stefan; Valtink, Monika; Takayoshi, Sumioka; Okada, Yuka; Miyajima, Masayasu; Saika, Shizuya; Reinach, Peter S. (2014) Temperature-Sensitive Transient Receptor Potential Channels in Corneal Tissue Layers and Cells. En: Ophthalmic Research. Vol. 52; No. 3; pp. 151-159; 0030-3747, 1423-0259; Consultado en: 2018/10/18/21:25:33. Disponible en: https://www.karger.com/Article/FullText/365334. Disponible en: 10.1159/000365334.
Zeng, Bo; Chen, Gui-Lan; Garcia-Vaz, Eliana; Bhandari, Sunil; Daskoulidou, Nikoleta; Berglund, Lisa M.; Jiang, Hongni; Hallett, Thomas; Zhou, Lu-Ping; Huang, Li; Xu, Zi-Hao; Nair, Viji; Nelson, Robert G.; Ju, Wenjun; Kretzler, Matthias; Atkin, Stephen L.; Gomez, Maria F.; Xu, Shang-Zhong (2017) ORAI channels are critical for receptor-mediated endocytosis of albumin. En: Nature Communications. Vol. 8; No. 1; pp. 1920 2041-1723; Consultado en: 2018/10/18/21:00:17. Disponible en: https://www.nature.com/articles/s41467-017-02094-y. Disponible en: 10.1038/s41467-017-02094-y.
Mergler, S.; Valtink, M.; Engelmann, K.; Pleyer, U. (2008) New Insights Into Electrophysiology and Functional Transient Receptor Potential (Trp) Channel Expression in the Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 49; No. 13; pp. 3939-3939; 1552-5783; Consultado en: 2018/10/18/19:58:56. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2379333.
Mergler, Stefan; Valtink, Monika; Coulson-Thomas, Vivien Jane; Lindemann, Dirk; Reinach, Peter S.; Engelmann, Katrin; Pleyer, Uwe (2010) TRPV channels mediate temperature-sensing in human corneal endothelial cells. En: Experimental Eye Research. Vol. 90; No. 6; pp. 758-770; 1096-0007; Disponible en: 10.1016/j.exer.2010.03.010.
Torricelli, Andre A. M.; Wilson, Steven E. (2014) Cellular and extracellular matrix modulation of corneal stromal opacity. En: Experimental eye research. Vol. 0; pp. 151-160; 0014-4835; Consultado en: 2018/10/17/02:30:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259857/. Disponible en: 10.1016/j.exer.2014.09.013.
Robbins, Ashlee; Kurose, Masayuki; Winterson, Barbara J.; Meng, Ian D. (2012) Menthol Activation of Corneal Cool Cells Induces TRPM8-Mediated Lacrimation but Not Nociceptive Responses in Rodents. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 11; pp. 7034-7042; 1552-5783; Disponible en: http://dx.doi.org/10.1167/iovs.12-10025. Disponible en: 10.1167/iovs.12-10025.
Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. En: Genome Biology. Vol. 8; No. 9; pp. R183 1465-6906; Consultado en: 2018/09/25/06:30:44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375021/. Disponible en: 10.1186/gb-2007-8-9-r183.
Nygaard, Vegard; Rødland, Einar Andreas; Hovig, Eivind (2016) Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. En: Biostatistics (Oxford, England). Vol. 17; No. 1; pp. 29-39; 1465-4644; Consultado en: 2018/09/25/06:25:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679072/. Disponible en: 10.1093/biostatistics/kxv027.
Iwamoto, Takeo; Devoe, A. Gerard (1971) Electron Microscopic Studies on Fuchs' Combined Dystrophy : I. Posterior Portion of the Cornea. En: Investigative Ophthalmology & Visual Science. Vol. 10; No. 1; pp. 9-28; 1552-5783; Consultado en: 2018/09/25/01:38:10. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2158325.
Patel, Sangita P.; Bourne, William M. (2009) Corneal Endothelial Cell Proliferation: A Function of Cell Density. En: Investigative ophthalmology & visual science. Vol. 50; No. 6; pp. 2742-2746; 0146-0404; Consultado en: 2018/08/28/20:52:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728347/. Disponible en: 10.1167/iovs.08-3002.
Corneal Endothelial Cell Proliferation: A Function of Cell Density. Consultado en: 2018/08/28/20:51:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728347/.
Joyce, Nancy C. (2003) Proliferative capacity of the corneal endothelium. En: Progress in Retinal and Eye Research. Vol. 22; No. 3; pp. 359-389; 1350-9462
Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe (2011) Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal epithelial cells. En: Journal of Cellular Physiology. Vol. 226; No. 7; pp. 1828-1842; 0021-9541; Consultado en: 2018/07/17/02:41:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072442/. Disponible en: 10.1002/jcp.22514.
Reinach, Peter S.; Mergler, Stefan; Okada, Yuka; Saika, Shizuya (2015) Ocular transient receptor potential channel function in health and disease. En: BMC Ophthalmology. Vol. 15; No. 1; pp. 153 1471-2415; Consultado en: 2018/07/16/18:30:34. Disponible en: https://doi.org/10.1186/s12886-015-0135-7. Disponible en: 10.1186/s12886-015-0135-7.
Venkatachalam, Kartik; Montell, Craig (2007) TRP Channels. En: Annual review of biochemistry. Vol. 76; pp. 387-417; 0066-4154; Consultado en: 2018/07/16/16:27:34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196875/. Disponible en: 10.1146/annurev.biochem.75.103004.142819.
TRP Channels | Annual Review of Biochemistry. Consultado en: 2018/07/16/16:25:31. Disponible en: https://www.annualreviews.org/doi/abs/10.1146/annurev.biochem.75.103004.142819?rfr_dat=cr_pub%3Dpubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&journalCode=biochem.
Lopez, Jose J.; Albarran, Letizia; Gómez, Luis J.; Smani, Tarik; Salido, Gines M.; Rosado, Juan A. (2016) Molecular modulators of store-operated calcium entry. En: Biochimica et Biophysica Acta (BBA). Vol. 1863; No. 8; pp. 2037-2043; 0167-4889; Consultado en: 2018/06/06/13:40:06. Disponible en: http://www.sciencedirect.com/science/article/pii/S0167488916301240. Disponible en: 10.1016/j.bbamcr.2016.04.024.
Schmedt, Thore; Silva, Mariana Mazzini; Ziaei, Alireza; Jurkunas, Ula (2012) Molecular Bases of Corneal Endothelial Dystrophies. En: Experimental Eye Research. Vol. 95; No. 1; pp. 24-34; 0014-4835; Consultado en: 2018/06/06/13:01:52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273549/. Disponible en: 10.1016/j.exer.2011.08.002.
Putney, James W.; Steinckwich-Besançon, Natacha; Numaga-Tomita, Takuro; Davis, Felicity M.; Desai, Pooja N.; D’Agostin, Diane M.; Wu, Shilan; Bird, Gary S. (2017) The Functions of Store-operated Calcium Channels. En: Biochimica et biophysica acta. Vol. 1864; No. 6; pp. 900-906; 0006-3002; Consultado en: 2018/06/03/22:55:44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420336/. Disponible en: 10.1016/j.bbamcr.2016.11.028.
Mergler, Stefan; Valtink, Monika; Taetz, Katrin; Sahlmüller, Monika; Fels, Gabriele; Reinach, Peter S.; Engelmann, Katrin; Pleyer, Uwe (2011) Characterization of transient receptor potential vanilloid channel 4 (TRPV4) in human corneal endothelial cells. En: Experimental Eye Research. Vol. 93; No. 5; pp. 710-719; 1096-0007; Disponible en: 10.1016/j.exer.2011.09.021.
Prakriya, Murali; Lewis, Richard S. (2015) Store-Operated Calcium Channels. En: Physiological Reviews. Vol. 95; No. 4; pp. 1383-1436; 0031-9333; Consultado en: 2018/06/03/22:36:14. Disponible en: https://www.physiology.org/doi/abs/10.1152/physrev.00020.2014. Disponible en: 10.1152/physrev.00020.2014.
Hong, Show-Jen; Wu, Kwou-Yeung; Wang, Hwei-Zu; Fong, Jim. C (2003) Change of Cytosolic Ca2+ Mobility in Cultured Bovine Corneal Endothelial Cells by Endothelin-1. En: Journal of Ocular Pharmacology and Therapeutics. Vol. 19; No. 1; pp. 1-9; 1080-7683; Consultado en: 2018/06/03/02:56:10. Disponible en: https://www.liebertpub.com/doi/abs/10.1089/108076803762718060. Disponible en: 10.1089/108076803762718060.
Mergler, Stefan; Dannowski, Haike; Bednarz, Jürgen; Engelmann, Katrin; Hartmann, Christian; Pleyer, Uwe (2003) Calcium influx induced by activation of receptor tyrosine kinases in SV40-transfected human corneal endothelial cells. En: Experimental Eye Research. Vol. 77; No. 4; pp. 485-495; 0014-4835
Harrison, Theresa A.; He, Zhiguo; Boggs, Kristin; Thuret, Gilles; Liu, Hong-Xiang; Defoe, Dennis M. (2016) Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area. En: Molecular Vision. Vol. 22; pp. 31-39; 1090-0535; Consultado en: 2018/06/03/00:10:48. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814271/.
Meeting, Kyoto Cornea Club (1997) Current Opinions in the Kyoto Cornea Club: Proceedings of the First Annual Meeting of the Kyoto Cornea Club, Kyoto, Japan, December 1-2, 1995. pp. 108 : Kugler Publications; 978-90-6299-138-9
Tinggi, Ujang (2008) Selenium: its role as antioxidant in human health. En: Environmental Health and Preventive Medicine. Vol. 13; No. 2; pp. 102-108; 1342-078X, 1347-4715; Consultado en: 2019/02/04/16:53:41. Disponible en: http://link.springer.com/10.1007/s12199-007-0019-4. Disponible en: 10.1007/s12199-007-0019-4.
Bresgen, Nikolaus; Eckl, Peter (2015) Oxidative Stress and the Homeodynamics of Iron Metabolism. En: Biomolecules. Vol. 5; No. 2; pp. 808-847; 2218-273X; Consultado en: 2019/02/04/16:50:26. Disponible en: http://www.mdpi.com/2218-273X/5/2/808. Disponible en: 10.3390/biom5020808.
Glaser, Nicole; Little, Christopher; Lo, Weei; Cohen, Michael; Tancredi, Daniel; Wulff, Heike; O'Donnell, Martha (2017) Treatment with the KCa3.1 inhibitor TRAM-34 during diabetic ketoacidosis reduces inflammatory changes in the brain: TRAM-34 reduces DKA-related brain inflammation. En: Pediatric Diabetes. Vol. 18; No. 5; pp. 356-366; 1399543X; Consultado en: 2019/02/01/17:22:20. Disponible en: http://doi.wiley.com/10.1111/pedi.12396. Disponible en: 10.1111/pedi.12396.
Huang, Chunling; Pollock, Carol A.; Chen, Xin-Ming (2014) Role of the potassium channel KCa3.1 in diabetic nephropathy. En: Clinical Science. Vol. 127; No. 7; pp. 423-433; 0143-5221, 1470-8736; Consultado en: 2019/02/01/17:01:29. Disponible en: http://clinsci.org/lookup/doi/10.1042/CS20140075. Disponible en: 10.1042/CS20140075.
Tandon, A.; Tovey, J. C. K.; Sharma, A.; Gupta, R.; Mohan, R. R. (2010) Role of transforming growth factor Beta in corneal function, biology and pathology. En: Current Molecular Medicine. Vol. 10; No. 6; pp. 565-578; 1875-5666
Kaji, Y. (2005) Prevention of diabetic keratopathy. En: The British Journal of Ophthalmology. Vol. 89; No. 3; pp. 254-255; 0007-1161; Disponible en: 10.1136/bjo.2004.055541.
Thomas, Merlin C.; Brownlee, Michael; Susztak, Katalin; Sharma, Kumar; Jandeleit-Dahm, Karin A. M.; Zoungas, Sophia; Rossing, Peter; Groop, Per-Henrik; Cooper, Mark E. (2015) Diabetic kidney disease. En: Nature Reviews Disease Primers. pp. 15018 2056-676X; Consultado en: 2019/02/01/15:47:16. Disponible en: http://www.nature.com/articles/nrdp201518. Disponible en: 10.1038/nrdp.2015.18.
Yan, Liang-Jun (2018) Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. En: Animal Models and Experimental Medicine. Vol. 1; No. 1; pp. 7-13; 2576-2095; Disponible en: 10.1002/ame2.12001.
Forbes, Josephine M.; Cooper, Mark E. (2013) Mechanisms of diabetic complications. En: Physiological Reviews. Vol. 93; No. 1; pp. 137-188; 1522-1210; Disponible en: 10.1152/physrev.00045.2011.
Goyer, Benjamin; Thériault, Mathieu; Gendron, Sébastien P.; Brunette, Isabelle; Rochette, Patrick J.; Proulx, Stéphanie (2018) Extracellular Matrix and Integrin Expression Profiles in Fuchs Endothelial Corneal Dystrophy Cells and Tissue Model. En: Tissue Engineering. Part A. Vol. 24; No. 7-8; pp. 607-615; 1937-335X; Disponible en: 10.1089/ten.TEA.2017.0128.
Okumura, Naoki; Minamiyama, Ryuki; Ho, Leona Ty; Kay, EunDuck P.; Kawasaki, Satoshi; Tourtas, Theofilos; Schlötzer-Schrehardt, Ursula; Kruse, Friedrich E.; Young, Robert D.; Quantock, Andrew J.; Kinoshita, Shigeru; Koizumi, Noriko (2015) Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. En: Laboratory Investigation; a Journal of Technical Methods and Pathology. Vol. 95; No. 11; pp. 1291-1304; 1530-0307; Disponible en: 10.1038/labinvest.2015.111.
Cui, Zekai; Zeng, Qiaolang; Guo, Yonglong; Liu, Shiwei; Wang, Peiyuan; Xie, Mengyuan; Chen, Jiansu; Krahe, Ralf (2018) Pathological molecular mechanism of symptomatic late-onset Fuchs endothelial corneal dystrophy by bioinformatic analysis. En: PLOS ONE. Vol. 13; No. 5; pp. e0197750 1932-6203; Consultado en: 2019/02/01/04:18:13. Disponible en: http://dx.plos.org/10.1371/journal.pone.0197750. Disponible en: 10.1371/journal.pone.0197750.
Meekins, Landon C.; Rosado-Adames, Noel; Maddala, Rupalatha; Zhao, Jiagang J.; Rao, Ponugoti V.; Afshari, Natalie A. (2016) Corneal Endothelial Cell Migration and Proliferation Enhanced by Rho Kinase (ROCK) Inhibitors in In Vitro and In Vivo Models. En: Investigative Opthalmology & Visual Science. Vol. 57; No. 15; pp. 6731 1552-5783; Consultado en: 2019/02/01/04:03:47. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-20414. Disponible en: 10.1167/iovs.16-20414.
Soh, Yu Qiang; Peh, Gary; George, Benjamin Lawrence; Seah, Xin Yi; Primalani, Nishal Kishinchand; Adnan, Khadijah; Mehta, Jodhbir Singh (2016) Predicative Factors for Corneal Endothelial Cell Migration. En: Investigative Opthalmology & Visual Science. Vol. 57; No. 2; pp. 338 1552-5783; Consultado en: 2019/02/01/00:13:38. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.15-18300. Disponible en: 10.1167/iovs.15-18300.
Li, Shimin; Kim, Edward; Bonanno, Joseph A. (2016) Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux. En: American Journal of Physiology-Cell Physiology. Vol. 311; No. 1; pp. C116-C126; 0363-6143, 1522-1563; Consultado en: 2019/01/31/23:49:04. Disponible en: http://www.physiology.org/doi/10.1152/ajpcell.00095.2016. Disponible en: 10.1152/ajpcell.00095.2016.
Nguyen, Tracy T.; Bonanno, Joseph A. (2012) Lactate-H + Transport Is a Significant Component of the In Vivo Corneal Endothelial Pump. En: Investigative Opthalmology & Visual Science. Vol. 53; No. 4; pp. 2020 1552-5783; Consultado en: 2019/01/31/23:43:55. Disponible en: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.12-9475. Disponible en: 10.1167/iovs.12-9475.
Gabelt, B'Ann True; Paul L. Kaufman; Production and Flow of Aqueous Humor. En: Adler's Physiology of the Eye.: W B Saunders Company; 978-0-323-05714-1 978-0-323-08116-0
Riordan-Eva, Paul; Riordan-Eva, Paul; Augsburger, James J. (2017) Anatomy & Embryology of the Eye. En: Vaughan & Asbury's General Ophthalmology, 19e. No. Book, Section; New York, NY: McGraw-Hill Education; Consultado en: 2019/01/30/. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1144466589.
Doutch, James J.; Quantock, Andrew J.; Joyce, Nancy C.; Meek, Keith M. (2012) Ultraviolet Light Transmission through the Human Corneal Stroma Is Reduced in the Periphery. En: Biophysical Journal. Vol. 102; No. 6; pp. 1258-1264; 00063495; Consultado en: 2019/01/30/17:36:55. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0006349512002263. Disponible en: 10.1016/j.bpj.2012.02.023.
Shih, K. Co; Lam, K. S.-L.; Tong, L. (2017) A systematic review on the impact of diabetes mellitus on the ocular surface. En: Nutrition & Diabetes. Vol. 7; No. 3; pp. e251 2044-4052; Disponible en: 10.1038/nutd.2017.4.
A systematic review on the impact of diabetes mellitus on the ocular surface | Nutrition & Diabetes. Consultado en: 2019/01/27/23:42:54. Disponible en: https://www.nature.com/articles/nutd20174.
Diabetes. Consultado en: 2019/01/27/23:04:50. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/diabetes.
Deleterious impact of hyperglycemia on cystic fibrosis airway ion transport and epithelial repair. Consultado en: 2019/01/10/01:22:33. Disponible en: https://www.sciencedirect.com/science/article/pii/S1569199315001022.
Huang, Chunling; Pollock, Carol A.; Chen, Xin-Ming (2014) High Glucose Induces CCL20 in Proximal Tubular Cells via Activation of the KCa3.1 Channel. En: PLOS ONE. Vol. 9; No. 4; pp. e95173 1932-6203; Consultado en: 2019/01/10/01:22:04. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095173. Disponible en: 10.1371/journal.pone.0095173.
Huang, Xi; Jan, Lily Yeh (2014) Targeting potassium channels in cancer. En: The Journal of Cell Biology. Vol. 206; No. 2; pp. 151-162; 1540-8140; Disponible en: 10.1083/jcb.201404136.
Shao, Zhifei; Makinde, Toluwalope O.; Agrawal, Devendra K. (2011) Calcium-Activated Potassium Channel KCa3.1 in Lung Dendritic Cell Migration. En: American Journal of Respiratory Cell and Molecular Biology. Vol. 45; No. 5; pp. 962-968; 1044-1549; Consultado en: 2019/01/10/01:17:33. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262686/. Disponible en: 10.1165/rcmb.2010-0514OC.
Suarez, Jorge; Hu, Yong; Makino, Ayako; Fricovsky, Eduardo; Wang, Hong; Dillmann, Wolfgang H. (2008) Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. En: American Journal of Physiology-Cell Physiology. Vol. 295; No. 6; pp. C1561-C1568; 0363-6143; Consultado en: 2018/12/14/09:47:18. Disponible en: https://www.physiology.org/doi/full/10.1152/ajpcell.00076.2008. Disponible en: 10.1152/ajpcell.00076.2008.
Lu, Luo (2006) Stress-induced corneal epithelial apoptosis mediated by K+ channel activation. En: Progress in Retinal and Eye Research. Vol. 25; No. 6; pp. 515-538; 1350-9462; Disponible en: 10.1016/j.preteyeres.2006.07.004.
Kernt, Marcus; Hirneiss, C.; Neubauer, A. S.; Kampik, A. (2010) Minocycline is cytoprotective in human corneal endothelial cells and induces anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis (XIAP). En: The British Journal of Ophthalmology. Vol. 94; No. 7; pp. 940-946; 1468-2079; Disponible en: 10.1136/bjo.2009.165092.
Brownlee, Michael (2005) The pathobiology of diabetic complications: a unifying mechanism. En: Diabetes. Vol. 54; No. 6; pp. 1615-1625; 0012-1797
Ichim, Gabriel; Lopez, Jonathan; Ahmed, Shafiq U.; Muthalagu, Nathiya; Giampazolias, Evangelos; Delgado, M. Eugenia; Haller, Martina; Riley, Joel S.; Mason, Susan M.; Athineos, Dimitris; Parsons, Melissa J.; van de Kooij, Bert; Bouchier-Hayes, Lisa; Chalmers, Anthony J.; Rooswinkel, Rogier W.; Oberst, Andrew; Blyth, Karen; Rehm, Markus; Murphy, Daniel J.; Tait, Stephen W.G. (2015) Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death. En: Molecular Cell. Vol. 57; No. 5; pp. 860-872; 10972765; Consultado en: 2018/11/26/14:33:48. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1097276515000192. Disponible en: 10.1016/j.molcel.2015.01.018.
Cho, Dong-Hyung; Nakamura, Tomohiro; Fang, Jianguo; Cieplak, Piotr; Godzik, Adam; Gu, Zezong; Lipton, Stuart A. (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. En: Science (New York, N.Y.). Vol. 324; No. 5923; pp. 102-105; 1095-9203; Disponible en: 10.1126/science.1171091.
Vanden Berghe, T.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C. J.; Brunk, U. T.; Declercq, W.; Vandenabeele, P. (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. En: Cell Death and Differentiation. Vol. 17; No. 6; pp. 922-930; 1476-5403; Disponible en: 10.1038/cdd.2009.184.
Marchitti, Satori A; Chen, Ying; Thompson, David C; Vasiliou, Vasilis (2011) Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes:. En: Eye & Contact Lens: Science & Clinical Practice. Vol. 37; No. 4; pp. 206-213; 1542-2321; Consultado en: 2018/11/15/13:11:40. Disponible en: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00140068-201107000-00007. Disponible en: 10.1097/ICL.0b013e3182212642.
Nita, Małgorzata; Grzybowski, Andrzej (2016) The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. En: Oxidative Medicine and Cellular Longevity. Vol. 2016; pp. 1-23; 1942-0900, 1942-0994; Consultado en: 2018/11/15/12:57:37. Disponible en: http://www.hindawi.com/journals/omcl/2016/3164734/. Disponible en: 10.1155/2016/3164734.
Zhu, Cheng; Joyce, Nancy C. (2004) Proliferative response of corneal endothelial cells from young and older donors. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 6; pp. 1743-1751; 0146-0404
Senoo, T.; Joyce, N. C. (2000) Cell cycle kinetics in corneal endothelium from old and young donors. En: Investigative Ophthalmology & Visual Science. Vol. 41; No. 3; pp. 660-667; 0146-0404
Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Constantinos (2009) 8-hydroxy-2'-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. En: Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews. Vol. 27; No. 2; pp. 120-139; 1532-4095; Disponible en: 10.1080/10590500902885684.
Joyce, Nancy C.; Zhu, Cheng C.; Harris, Deshea L. (2009) Relationship among Oxidative Stress, DNA Damage, and Proliferative Capacity in Human Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 5; pp. 2116-2122; 1552-5783; Consultado en: 2018/11/15/04:08:10. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2126584. Disponible en: 10.1167/iovs.08-3007.
Kaczmarek, Leonard K. (2013) Slack, Slick, and Sodium-Activated Potassium Channels. En: International Scholarly Research Notices. Consultado en: 2018/11/05/04:27:01. Disponible en: https://www.hindawi.com/journals/isrn/2013/354262/.
Paulais, Marc; Lachheb, Sahran; Teulon, Jacques (2006) A Na+-and Cl−-activated K+ Channel in the Thick Ascending Limb of Mouse Kidney. En: The Journal of General Physiology. Vol. 127; No. 2; pp. 205-215; 0022-1295, 1540-7748; Consultado en: 2018/11/05/04:22:14. Disponible en: http://jgp.rupress.org/content/127/2/205. Disponible en: 10.1085/jgp.200509360.
Hayashi, Mikio; Wang, Jing; Hede, Susanne E.; Novak, Ivana (2012) An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. En: American Journal of Physiology. Cell Physiology. Vol. 303; No. 2; pp. C151-159; 1522-1563; Disponible en: 10.1152/ajpcell.00089.2012.
Hipfner, David R.; Cohen, Stephen M. (2003) The Drosophila sterile-20 kinase slik controls cell proliferation and apoptosis during imaginal disc development. En: PLoS biology. Vol. 1; No. 2; pp. E35 1545-7885; Disponible en: 10.1371/journal.pbio.0000035.
Dolga, A M; Terpolilli, N; Kepura, F; Nijholt, I M; Knaus, H-G; D'Orsi, B; Prehn, J H M; Eisel, U L M; Plant, T; Plesnila, N; Culmsee, C (2011) KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. En: Cell Death & Disease. Vol. 2; No. 4; pp. e147 2041-4889; Consultado en: 2018/11/05/03:17:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3122061/. Disponible en: 10.1038/cddis.2011.30.
Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M.; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto (2013) Laminar shear stress upregulates endothelial Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 via a Ca²⁺/calmodulin-dependent protein kinase kinase/Akt/p300 cascade. En: American Journal of Physiology. Heart and Circulatory Physiology. Vol. 305; No. 4; pp. H484-493; 1522-1539; Disponible en: 10.1152/ajpheart.00642.2012.
Tajhya, Rajeev B.; Hu, Xueyou; Tanner, Mark R.; Huq, Redwan; Kongchan, Natee; Neilson, Joel R.; Rodney, George G.; Horrigan, Frank T.; Timchenko, Lubov T.; Beeton, Christine (2016) Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts. En: Cell Death & Disease. Vol. 7; No. 10; pp. e2426 2041-4889; Disponible en: 10.1038/cddis.2016.324.
Potier, M; Chantome, A; Joulin, V; Girault, A; Roger, S; Besson, P; Jourdan, M-L; LeGuennec, J-Y; Bougnoux, P; Vandier, C (2011) The SK3/KCa2.3 potassium channel is a new cellular target for edelfosine. En: British Journal of Pharmacology. Vol. 162; No. 2; pp. 464-479; 0007-1188; Consultado en: 2018/11/05/02:33:22. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031066/. Disponible en: 10.1111/j.1476-5381.2010.01044.x.
Schwab, Albrecht; Fabian, Anke; Hanley, Peter J.; Stock, Christian (2012) Role of Ion Channels and Transporters in Cell Migration. En: Physiological Reviews. Vol. 92; No. 4; pp. 1865-1913; 0031-9333; Consultado en: 2018/11/04/22:04:35. Disponible en: https://www.physiology.org/doi/full/10.1152/physrev.00018.2011. Disponible en: 10.1152/physrev.00018.2011.
Ouadid-Ahidouch, Halima; Ahidouch, Ahmed (2013) K+ channels and cell cycle progression in tumor cells. En: Frontiers in Physiology. Vol. 4; 1664-042X; Consultado en: 2018/11/04/21:48:41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747328/. Disponible en: 10.3389/fphys.2013.00220.
Santi, Celia M.; Butler, Alice; Kuhn, Julia; Wei, Aguan; Salkoff, Lawrence (2009) Bovine and Mouse SLO3 K+ Channels. En: The Journal of Biological Chemistry. Vol. 284; No. 32; pp. 21589-21598; 0021-9258; Consultado en: 2018/11/04/17:56:39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755883/. Disponible en: 10.1074/jbc.M109.015040.
Song, Penghong; Du, Yehui; Song, Wenfeng; Chen, Hao; Xuan, Zefeng; Zhao, Long; Chen, Jun; Chen, Jian; Guo, Danjing; Jin, Cheng; Zhao, Yongchao; Tuo, Biguang; Zheng, Shusen (2017) KCa3.1 as an Effective Target for Inhibition of Growth and Progression of Intrahepatic Cholangiocarcinoma. En: Journal of Cancer. Vol. 8; No. 9; pp. 1568-1578; 1837-9664; Consultado en: 2018/11/04/17:46:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535712/. Disponible en: 10.7150/jca.18697.
Jackson, William F. (2010) KV1.3: A new therapeutic target to control vascular smooth muscle cell proliferation. En: Arteriosclerosis, thrombosis, and vascular biology. Vol. 30; No. 6; pp. 1073-1074; 1079-5642; Consultado en: 2018/11/04/05:42:24. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891047/. Disponible en: 10.1161/ATVBAHA.110.206565.
Vandorpe, D. H.; Shmukler, B. E.; Jiang, L.; Lim, B.; Maylie, J.; Adelman, J. P.; de Franceschi, L.; Cappellini, M. D.; Brugnara, C.; Alper, S. L. (1998) cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. En: The Journal of Biological Chemistry. Vol. 273; No. 34; pp. 21542-21553; 0021-9258
Chandy, K. George; Wulff, Heike; Beeton, Christine; Pennington, Michael; Gutman, George A.; Cahalan, Michael D. (2004) K+ channels as targets for specific immunomodulation. En: Trends in Pharmacological Sciences. Vol. 25; No. 5; pp. 280-289; 0165-6147; Disponible en: 10.1016/j.tips.2004.03.010.
Wei, Aguan D.; Gutman, George A.; Aldrich, Richard; Chandy, K. George; Grissmer, Stephan; Wulff, Heike (2005) International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels. En: Pharmacological Reviews. Vol. 57; No. 4; pp. 463-472; 0031-6997, 1521-0081; Consultado en: 2018/11/04/03:53:18. Disponible en: http://pharmrev.aspetjournals.org/content/57/4/463. Disponible en: 10.1124/pr.57.4.9.
International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels | Pharmacological Reviews. Consultado en: 2018/11/04/03:17:27. Disponible en: http://pharmrev.aspetjournals.org/content/57/4/463.
Ha, Tal Soo; Heo, Moon-Sun; Park, Chul-Seung (2004) Functional Effects of Auxiliary β4-Subunit on Rat Large-Conductance Ca2+-Activated K+ Channel. En: Biophysical Journal. Vol. 86; No. 5; pp. 2871-2882; 0006-3495; Consultado en: 2018/11/04/03:04:15. Disponible en: http://www.sciencedirect.com/science/article/pii/S0006349504743398. Disponible en: 10.1016/S0006-3495(04)74339-8.
Guéguinou, Maxime; Chantôme, Aurélie; Fromont, Gaëlle; Bougnoux, Philippe; Vandier, Christophe; Potier-Cartereau, Marie (2014) KCa and Ca2+ channels: The complex thought. En: Biochimica et Biophysica Acta (BBA). Calcium Signaling in Health and Disease; Vol. 1843; No. 10; pp. 2322-2333; 0167-4889; Consultado en: 2018/11/03/22:56:19. Disponible en: http://www.sciencedirect.com/science/article/pii/S0167488914000834. Disponible en: 10.1016/j.bbamcr.2014.02.019.
Mobasseri, Majid; Shirmohammadi, Masoud; Amiri, Tarlan; Vahed, Nafiseh; Hosseini Fard, Hossein; Ghojazadeh, Morteza (2020) Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. En: Health Promotion Perspectives. Vol. 10; No. 2; pp. 98-115; 2228-6497; Consultado en: 2020/08/17/12:24:10. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146037/. Disponible en: 10.34172/hpp.2020.18.
Lindner, L. M. E.; Rathmann, W.; Rosenbauer, J. (2018) Inequalities in glycaemic control, hypoglycaemia and diabetic ketoacidosis according to socio-economic status and area-level deprivation in Type 1 diabetes mellitus: a systematic review. En: Diabetic Medicine. Vol. 35; No. 1; pp. 12-32; 1464-5491; Consultado en: 2020/08/17/13:14:29. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/dme.13519. Disponible en: 10.1111/dme.13519.
Pandova, Maya Georgieva (2019) Diabetic Retinopathy and Blindness: An Epidemiological Overview. En: Visual Impairment and Blindness. Consultado en: 2020/08/17/13:17:43. Disponible en: https://www.intechopen.com/online-first/diabetic-retinopathy-and-blindness-an-epidemiological-overview. Disponible en: 10.5772/intechopen.88756.
Fang, Michael; Echouffo-Tcheugui, Justin B.; Selvin, Elizabeth (2020) Burden of Complications in U.S. Adults With Young-Onset Type 2 or Type 1 Diabetes. En: Diabetes Care. Vol. 43; No. 4; pp. e47-e49; 0149-5992, 1935-5548; Consultado en: 2020/08/17/14:00:48. Disponible en: https://care.diabetesjournals.org/content/43/4/e47. Disponible en: 10.2337/dc19-2394.
Jeganathan, V. Swetha E.; Wang, Jie Jin; Wong, Tien Yin (2008) Ocular Associations of Diabetes Other Than Diabetic Retinopathy. En: Diabetes Care. Vol. 31; No. 9; pp. 1905-1912; 0149-5992; Consultado en: 2020/08/17/14:39:16. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518369/. Disponible en: 10.2337/dc08-0342.
Tuft, S. J.; Coster, D. J. (1990) The corneal endothelium. En: Eye. Vol. 4; No. 3; pp. 389-424; 1476-5454; Consultado en: 2020/08/19/23:08:22. Disponible en: https://www.nature.com/articles/eye199053. Disponible en: 10.1038/eye.1990.53.
Cochrane Handbook for Systematic Reviews of Interventions. Consultado en: 2020/09/08/17:55:35. Disponible en: /handbook/current.
Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico (2014) MaxiK channel and cell signalling. En: Pflugers Archiv : European journal of physiology. Vol. 466; No. 5; pp. 875-886; 0031-6768; Consultado en: 2020/09/18/10:21:15. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969412/. Disponible en: 10.1007/s00424-013-1359-0.
Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Higa, Kazunari; Suzuki, Terumasa; Aketa, Naohiko; Dogru, Murat; Satake, Yoshiyuki; Shimazaki, Jun (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. En: Scientific Reports. Vol. 7; No. 1; pp. 13603 2045-2322; Consultado en: 2020/09/18/10:44:14. Disponible en: https://www.nature.com/articles/s41598-017-14131-3. Disponible en: 10.1038/s41598-017-14131-3.
Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Higa, Kazunari; Suzuki, Terumasa; Aketa, Naohiko; Dogru, Murat; Satake, Yoshiyuki; Shimazaki, Jun (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. En: Scientific Reports. Vol. 7; No. 1; pp. 13603 2045-2322; Consultado en: 2020/09/18/10:46:25. Disponible en: https://www.nature.com/articles/s41598-017-14131-3. Disponible en: 10.1038/s41598-017-14131-3.
Lass, Jonathan H.; Beck, Roy W.; Benetz, Beth Ann; Dontchev, Mariya; Gal, Robin L.; Holland, Edward J.; Kollman, Craig; Mannis, Mark J.; Price, Francis; Raber, Irving; Stark, Walter; Stulting, R. Doyle; Sugar, Alan; Group, for the Cornea Donor Study Investigator (2011) Baseline Factors Related to Endothelial Cell Loss Following Penetrating Keratoplasty. En: Archives of Ophthalmology. Vol. 129; No. 9; pp. 1149-1154; 0003-9950; Consultado en: 2020/09/18/10:52:03. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/1106439. Disponible en: 10.1001/archophthalmol.2011.102.
Feizi, Sepehr (2018) Corneal endothelial cell dysfunction: etiologies and management. En: Therapeutic Advances in Ophthalmology. Vol. 10; 2515-8414; Consultado en: 2020/09/18/12:54:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293368/. Disponible en: 10.1177/2515841418815802.
Singh, Harpreet; Stefani, Enrico; Toro, Ligia (2012) Intracellular BKCa (iBKCa) channels. En: The Journal of Physiology. Vol. 590; No. 23; pp. 5937-5947; 1469-7793; Consultado en: 2020/09/18/23:30:55. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2011.215533. Disponible en: 10.1113/jphysiol.2011.215533.
Yan, Jiusheng; Aldrich, Richard W. (2012) BK potassium channel modulation by leucine-rich repeat-containing proteins. En: Proceedings of the National Academy of Sciences. Vol. 109; No. 20; pp. 7917-7922; 0027-8424, 1091-6490; Consultado en: 2020/10/29/17:29:52. Disponible en: https://www.pnas.org/content/109/20/7917. Disponible en: 10.1073/pnas.1205435109.
Skyler, Jay S.; Bakris, George L.; Bonifacio, Ezio; Darsow, Tamara; Eckel, Robert H.; Groop, Leif; Groop, Per-Henrik; Handelsman, Yehuda; Insel, Richard A.; Mathieu, Chantal; McElvaine, Allison T.; Palmer, Jerry P.; Pugliese, Alberto; Schatz, Desmond A.; Sosenko, Jay M.; Wilding, John P. H.; Ratner, Robert E. (2017) Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. En: Diabetes. Vol. 66; No. 2; pp. 241-255; 0012-1797, 1939-327X; Consultado en: 2020/12/06/16:44:25. Disponible en: https://diabetes.diabetesjournals.org/content/66/2/241. Disponible en: 10.2337/db16-0806.
Hatou, Shin; Yamada, Masakazu; Akune, Yoko; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo; Tsubota, Kazuo (2010) Role of Insulin in Regulation of Na+-/K+-Dependent ATPase Activity and Pump Function in Corneal Endothelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 51; No. 8; pp. 3935-3942; 1552-5783; Consultado en: 2020/12/06/23:52:28. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2126373. Disponible en: 10.1167/iovs.09-4027.
Cernea, Simona; Dobreanu, Minodora (2013) Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. En: Biochemia Medica. Vol. 23; No. 3; pp. 266-280; 1330-0962; Disponible en: 10.11613/bm.2013.033.
McCarey, Bernard E.; Edelhauser, Henry F.; Lynn, Michael J. (2008) Review of Corneal Endothelial Specular Microscopy for FDA Clinical Trials of Refractive Procedures, Surgical Devices and New Intraocular Drugs and Solutions. En: Cornea. Vol. 27; No. 1; pp. 1-16; 0277-3740; Consultado en: 2020/12/11/01:30:12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062434/. Disponible en: 10.1097/ICO.0b013e31815892da.
Van den Bogerd, Bert; Dhubhghaill, Sorcha Ní; Koppen, Carina; Tassignon, Marie-José; Zakaria, Nadia (2018) A review of the evidence for in vivo corneal endothelial regeneration. En: Survey of Ophthalmology. Vol. 63; No. 2; pp. 149-165; 0039-6257; Consultado en: 2020/12/14/16:17:25. Disponible en: http://www.sciencedirect.com/science/article/pii/S0039625717301054. Disponible en: 10.1016/j.survophthal.2017.07.004.
Powers, Alvin C.; Niswender, Kevin D.; Evans-Molina, Carmella; Jameson, J. Larry; Fauci, Anthony S.; Kasper, Dennis L.; Hauser, Stephen L.; Longo, Dan L.; Loscalzo, Joseph (2018) Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. En: Harrison's Principles of Internal Medicine. New York, NY: McGraw-Hill Education; Consultado en: 2020/12/14/17:13:54. Disponible en: accessmedicine.mhmedical.com/content.aspx?aid=1156520865.
Roszkowska, A. M.; Tringali, C. G.; Colosi, P.; Squeri, C. A.; Ferreri, G. (1999) Corneal endothelium evaluation in type I and type II diabetes mellitus. En: Ophthalmologica. Journal International D'ophtalmologie. International Journal of Ophthalmology. Zeitschrift Fur Augenheilkunde. Vol. 213; No. 4; pp. 258-261; 0030-3755; Disponible en: 10.1159/000027431.
Goldstein, Andrew S.; Janson, Ben J.; Skeie, Jessica M.; Ling, Jennifer J.; Greiner, Mark A. (2020) The effects of diabetes mellitus on the corneal endothelium: A review. En: Survey of Ophthalmology. Vol. 65; No. 4; pp. 438-450; 1879-3304; Disponible en: 10.1016/j.survophthal.2019.12.009.
Lin, Hung-Yu; Weng, Shao-Wen; Chang, Yen-Hsiang; Su, Yu-Jih; Chang, Chih-Min; Tsai, Chia-Jen; Shen, Feng-Chih; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Lin, Ching-Yi; Wang, Pei-Wen (2018) The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species. En: Oxidative Medicine and Cellular Longevity. Consultado en: 2020/12/16/00:07:04. Disponible en: https://www.hindawi.com/journals/omcl/2018/7514383/.
Ottawa Hospital Research Institute. Consultado en: 2021/01/28/13:37:00. Disponible en: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
American Diabetes Association (2020) Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2020. En: Diabetes Care. Vol. 43; No. Supplement 1; pp. S98-S110; 0149-5992, 1935-5548; Consultado en: 2021/02/10/18:34:20. Disponible en: https://care.diabetesjournals.org/content/43/Supplement_1/S98. Disponible en: 10.2337/dc20-S009.
Roo, An-Katrien De; Wouters, Jasper; Govaere, Olivier; Foets, Beatrijs; Oord, Joost J. van den (2017) Identification of Circulating Fibrocytes and Dendritic Derivatives in Corneal Endothelium of Patients With Fuchs' Dystrophy. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 1; pp. 670-681; 1552-5783; Consultado en: 2021/02/12/16:01:13. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2600835. Disponible en: 10.1167/iovs.16-20880.
Anbar, Mohamed; Ammar, Hatem; Mahmoud, Ramadan A. (2016) Corneal Endothelial Morphology in Children with Type 1 Diabetes. En: Journal of Diabetes Research. Vol. 2016; 2314-6745; Consultado en: 2021/02/17/19:59:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939174/. Disponible en: 10.1155/2016/7319047.
Calvo-Maroto, Ana M.; Cerviño, Alejandro; Perez-Cambrodí, Rafael J.; García-Lázaro, Santiago; Sanchis-Gimeno, Juan A. (2015) Quantitative corneal anatomy: evaluation of the effect of diabetes duration on the endothelial cell density and corneal thickness. En: Ophthalmic and Physiological Optics. Vol. 35; No. 3; pp. 293-298; 1475-1313; Consultado en: 2021/02/17/21:06:50. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/opo.12191. Disponible en: https://doi.org/10.1111/opo.12191.
Cankurtaran, Veysel; Tekin, Kemal (2019) Cumulative Effects of Smoking and Diabetes Mellitus on Corneal Endothelial Cell Parameters. En: Cornea. Vol. 38; No. 1; pp. 78-83; 1536-4798; Disponible en: 10.1097/ICO.0000000000001718.
Changes in Choroidal Thickness and Corneal Parameters in Diabetic Eyes. Consultado en: 2021/02/17/21:47:35. Disponible en: https://journals.sagepub.com/doi/abs/10.5301/ejo.5000677.
Baker, Peter; Fain, Pam; Kahles, Heinrich; Yu, Liping; Hutton, John; Wenzlau, Janet; Rewers, Marian; Badenhoop, Klaus; Eisenbarth, George (2012) Genetic Determinants of 21-Hydroxylase Autoantibodies Amongst Patients of the Type 1 Diabetes Genetics Consortium. En: The Journal of Clinical Endocrinology & Metabolism. Vol. 97; No. 8; pp. E1573-E1578; 0021-972X; Consultado en: 2021/02/19/15:37:51. Disponible en: https://doi.org/10.1210/jc.2011-2824. Disponible en: 10.1210/jc.2011-2824.
Morran, Michael P.; Vonberg, Andrew; Khadra, Anmar; Pietropaolo, Massimo (2015) Immunogenetics of Type 1 Diabetes Mellitus. En: Molecular aspects of medicine. Vol. 42; pp. 42-60; 0098-2997; Consultado en: 2021/02/19/18:08:27. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548800/. Disponible en: 10.1016/j.mam.2014.12.004.
Iwata, M.; Kiritoshi, A.; Roat, M. I.; Yagihashi, A.; Thoft, R. A. (1992) Regulation of HLA class II antigen expression on cultured corneal epithelium by interferon-gamma. En: Investigative Ophthalmology & Visual Science. Vol. 33; No. 9; pp. 2714-2721; 0146-0404
Donnelly, J. J.; Li, W. Y.; Rockey, J. H.; Prendergast, R. A. (1985) Induction of class II (Ia) alloantigen expression on corneal endothelium in vivo and in vitro. En: Investigative Ophthalmology & Visual Science. Vol. 26; No. 4; pp. 575-580; 1552-5783; Consultado en: 2021/02/19/21:13:20. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2177064.
Young, E.; Stark, W. J.; Prendergast, R. A. (1985) Immunology of corneal allograft rejection: HLA-DR antigens on human corneal cells. En: Investigative Ophthalmology & Visual Science. Vol. 26; No. 4; pp. 571-574; 1552-5783; Consultado en: 2021/02/19/21:19:07. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2177105.
Zhang, Jie; McGhee, Charles N. J.; Patel, Dipika V. (2019) The Molecular Basis of Fuchs’ Endothelial Corneal Dystrophy. En: Molecular Diagnosis & Therapy. Vol. 23; No. 1; pp. 97-112; 1179-2000; Consultado en: 2021/02/19/21:22:54. Disponible en: https://doi.org/10.1007/s40291-018-0379-z. Disponible en: 10.1007/s40291-018-0379-z.
Treseler, P. A.; Foulks, G. N.; Sanfilippo, F. (1984) The expression of HLA antigens by cells in the human cornea. En: American Journal of Ophthalmology. Vol. 98; No. 6; pp. 763-772; 0002-9394; Disponible en: 10.1016/0002-9394(84)90696-2.
Crotti, Chiara; Selmi, Carlo; Shoenfeld, Yehuda; Meroni, Pier Luigi; Gershwin, M. Eric (2014) Chapter 46. En: Autoantibodies (Third Edition). pp. 385-389; San Diego: Elsevier; 978-0-444-56378-1; Consultado en: 2021/02/19/22:57:55. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780444563781000460.
Lahdou, Imad; Engler, Christoph; Mehrle, Stefan; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Terness, Peter (2014) Role of Human Corneal Endothelial Cells in T-Cell–Mediated Alloimmune Attack In Vitro. En: Investigative Ophthalmology & Visual Science. Vol. 55; No. 3; pp. 1213-1221; 1552-5783; Consultado en: 2021/02/20/01:15:36. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2189465. Disponible en: 10.1167/iovs.13-11930.
Whikehart (1995) The inhibition of sodium, potassium-stimulated ATPase and corneal swelling: the role played by polyols. En: Journal of the American Optometric Association. Vol. 66; No. 6; pp. 331-333; 0003-0244; Consultado en: 2021/02/20/02:01:22. Disponible en: https://europepmc.org/article/med/7673590.
Busted, N; Olsen, T; Schmitz, O (1981) Clinical observations on the corneal thickness and the corneal endothelium in diabetes mellitus. En: The British Journal of Ophthalmology. Vol. 65; No. 10; pp. 687-690; 0007-1161; Consultado en: 2021/02/20/02:10:18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1039638/.
Zhang, Kaikai; Zhao, Liangliang; Zhu, Chao; Nan, Weijin; Ding, Xinfen; Dong, Yuchen; Zhao, Meisheng (2021) The effect of diabetes on corneal endothelium: a meta-analysis. En: BMC Ophthalmology. Vol. 21; No. 1; pp. 78 1471-2415; Consultado en: 2021/02/20/02:31:55. Disponible en: https://doi.org/10.1186/s12886-020-01785-3. Disponible en: 10.1186/s12886-020-01785-3.
Differences in corneal thickness and corneal endothelium related to duration in Diabetes | Eye. Consultado en: 2021/02/27/23:25:31. Disponible en: https://www.nature.com/articles/6701868.
Lee, J. S.; Oum, B. S.; Choi, H. Y.; Lee, J. E.; Cho, B. M. (2006) Differences in corneal thickness and corneal endothelium related to duration in diabetes. En: Eye (London, England). Vol. 20; No. 3; pp. 315-318; 0950-222X; Disponible en: 10.1038/sj.eye.6701868.
Tk, Yoo; E, Oh (2019) Diabetes mellitus is associated with dry eye syndrome: a meta-analysis. En: International Ophthalmology. Vol. 39; No. 11; pp. 2611-2620; 0165-5701, 1573-2630; Consultado en: 2021/03/01/19:32:48. Disponible en: https://europepmc.org/article/med/31065905. Disponible en: 10.1007/s10792-019-01110-y.
Stuard, Whitney L.; Titone, Rossella; Robertson, Danielle M. (2017) Tear Levels of Insulin-Like Growth Factor Binding Protein 3 Correlate With Subbasal Nerve Plexus Changes in Patients With Type 2 Diabetes Mellitus. En: Investigative Ophthalmology & Visual Science. Vol. 58; No. 14; pp. 6105-6112; 1552-5783; Consultado en: 2021/03/01/19:40:54. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2665837. Disponible en: 10.1167/iovs.17-22425.
Wu, Yu-Chieh; Buckner, Benjamin R.; Zhu, Meifang; Cavanagh, H. Dwight; Robertson, Danielle M. (2012) Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium. En: The Ocular Surface. Vol. 10; No. 2; pp. 100-107; 1542-0124; Disponible en: 10.1016/j.jtos.2012.01.004.
Vujosevic, Stela; Muraca, Andrea; Alkabes, Micol; Villani, Edoardo; Cavarzeran, Fabiano; Rossetti, Luca; De Cillaʼ, Stefano (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. En: Retina (Philadelphia, Pa.). Vol. 39; No. 3; pp. 435-445; 1539-2864; Disponible en: 10.1097/IAE.0000000000001990.
Stem, Maxwell S.; Hussain, Munira; Lentz, Stephen I.; Raval, Nilesh; Gardner, Thomas W.; Pop-Busui, Rodica; Shtein, Roni M. (2014) Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus. En: Journal of diabetes and its complications. Vol. 28; No. 5; pp. 658-661; 1056-8727; Consultado en: 2021/03/02/01:40:05. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146399/. Disponible en: 10.1016/j.jdiacomp.2014.06.007.
Tang, Yizhen; Chen, Xinyi; Zhang, Xiaobo; Tang, Qiaomei; Liu, Siyu; Yao, Ke (2017) Clinical evaluation of corneal changes after phacoemulsification in diabetic and non-diabetic cataract patients, a systematic review and meta-analysis. En: Scientific Reports. Vol. 7; 2045-2322; Consultado en: 2021/03/05/11:34:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658349/. Disponible en: 10.1038/s41598-017-14656-7.
Fong, Donald S.; Aiello, Lloyd; Gardner, Thomas W.; King, George L.; Blankenship, George; Cavallerano, Jerry D.; Ferris, Fredrick L.; Klein, Ronald (2004) Retinopathy in Diabetes. En: Diabetes Care. Vol. 27; No. suppl 1; pp. s84-s87; 0149-5992, 1935-5548; Consultado en: 2021/03/05/13:54:59. Disponible en: https://care.diabetesjournals.org/content/27/suppl_1/s84. Disponible en: 10.2337/diacare.27.2007.S84.
Costantini, E.; Touzeau, O.; Gaujoux, T.; Basli, E.; Kopito, R.; Borderie, V. M.; Laroche, L. (2009) Age-Related Changes in Central and Peripheral Corneal Thickness. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 13; pp. 5107-5107; 1552-5783; Consultado en: 2021/03/05/22:41:18. Disponible en: http://iovs.arvojournals.org/article.aspx?articleid=2367476.
Abib, F. C.; Barreto Junior, J. (2001) Behavior of corneal endothelial density over a lifetime. En: Journal of Cataract and Refractive Surgery. Vol. 27; No. 10; pp. 1574-1578; 0886-3350; Disponible en: 10.1016/s0886-3350(01)00925-7.
Islam, Qamar Ul; Saeed, Muhammad Kamran; Mehboob, Mohammad Asim (2017) Age related changes in corneal morphological characteristics of healthy Pakistani eyes. En: Saudi Journal of Ophthalmology. Vol. 31; No. 2; pp. 86-90; 1319-4534; Consultado en: 2021/03/06/13:03:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436377/. Disponible en: 10.1016/j.sjopt.2017.02.009.
Zhao, Di; Cho, Juhee; Kim, Myung Hun; Friedman, David S.; Guallar, Eliseo (2015) Diabetes, Fasting Glucose, and the Risk of Glaucoma: A Meta-analysis. En: Ophthalmology. Vol. 122; No. 1; pp. 72-78; 0161-6420, 1549-4713; Consultado en: 2021/03/12/09:06:51. Disponible en: https://www.aaojournal.org/article/S0161-6420(14)00697-6/abstract. Disponible en: 10.1016/j.ophtha.2014.07.051.
Doughty, M. J.; Zaman, M. L. (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. En: Survey of Ophthalmology. Vol. 44; No. 5; pp. 367-408; 0039-6257; Disponible en: 10.1016/s0039-6257(00)00110-7.
Margo, Jordan A.; Whiting, Martha F.; Brown, Clayton H.; Hoover, Caroline K.; Munir, Wuqaas M. (2017) The Effect of Chronic Pulmonary Disease and Mechanical Ventilation on Corneal Donor Endothelial Cell Density and Transplant Suitability. En: American Journal of Ophthalmology. Vol. 183; pp. 65-70; 0002-9394; Consultado en: 2021/03/15/16:23:06. Disponible en: https://www.sciencedirect.com/science/article/pii/S000293941730377X. Disponible en: 10.1016/j.ajo.2017.08.023.
Magdum, Renu M.; Mutha, Neha; Maheshgauri, Rupali (2013) A study of corneal endothelial changes in soft contact lens wearers using non-contact specular microscopy. En: Medical Journal of Dr. D.Y. Patil University. Vol. 6; No. 3; pp. 245 0975-2870; Consultado en: 2021/03/15/16:59:08. Disponible en: https://www.mjdrdypu.org/article.asp?issn=0975-2870;year=2013;volume=6;issue=3;spage=245;epage=249;aulast=Magdum;type=0. Disponible en: 10.4103/0975-2870.114645.
Corneal endothelial cell density in glaucoma. Consultado en: 2021/03/15/17:14:55. Disponible en: https://europepmc.org/article/med/9143804.
Kheirkhah, Ahmad; Saboo, Ujwala S.; Abud, Tulio B.; Dohlman, Thomas H.; Arnoldner, Michael A.; Hamrah, Pedram; Dana, Reza (2015) Reduced Corneal Endothelial Cell Density in Patients with Dry Eye Disease. En: American journal of ophthalmology. Vol. 159; No. 6; pp. 1022 Consultado en: 2021/03/15/18:12:02. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427236/. Disponible en: 10.1016/j.ajo.2015.03.011.
Konstantopoulos, Spyros (2011) Fixed effects and variance components estimation in three-level meta-analysis. En: Research Synthesis Methods. Vol. 2; No. 1; pp. 61-76; 1759-2879; Disponible en: 10.1002/jrsm.35.
Viechtbauer, Wolfgang (2010) Conducting Meta-Analyses in R with the metafor Package. En: Journal of Statistical Software. Vol. 36; No. 1; pp. 1-48; 1548-7660; Consultado en: 2021/03/26/22:53:47. Disponible en: https://www.jstatsoft.org/index.php/jss/article/view/v036i03. Disponible en: 10.18637/jss.v036.i03.
R Core Team (2020); R: A language and environment for statistical computing. R Foundation for Statistical Computing. Consultado en: 2021/03/26/23:08:22. Disponible en: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006.
Kudva, Ajay A.; Lasrado, Adeline S.; Hegde, Sudhir; Kadri, Rajani; Devika, P.; Shetty, Akansha (2020) Corneal endothelial cell changes in diabetics versus age group matched nondiabetics after manual small incision cataract surgery. En: Indian Journal of Ophthalmology. Vol. 68; No. 1; pp. 72 0301-4738; Consultado en: 2021/03/29/10:13:00. Disponible en: https://www.ijo.in/article.asp?issn=0301-4738;year=2020;volume=68;issue=1;spage=72;epage=76;aulast=Kudva;type=0. Disponible en: 10.4103/ijo.IJO_406_19.
Gambato, Catia; Longhin, Evelyn; Catania, Anton Giulio; Lazzarini, Daniela; Parrozzani, Raffaele; Midena, Edoardo (2015) Aging and corneal layers: an in vivo corneal confocal microscopy study. En: Graefe's Archive for Clinical and Experimental Ophthalmology. Vol. 253; No. 2; pp. 267-275; 1435-702X; Consultado en: 2021/04/03/12:31:21. Disponible en: https://doi.org/10.1007/s00417-014-2812-2. Disponible en: 10.1007/s00417-014-2812-2.
Niederer, R. L.; Perumal, D.; Sherwin, T.; McGhee, C. N. J. (2007) Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. En: The British Journal of Ophthalmology. Vol. 91; No. 9; pp. 1165-1169; 0007-1161; Disponible en: 10.1136/bjo.2006.112656.
Vassilev, Vassil S.; Mandai, Michiko; Yonemura, Shigenobu; Takeichi, Masatoshi (2012) Loss of N-Cadherin from the Endothelium Causes Stromal Edema and Epithelial Dysgenesis in the Mouse Cornea. En: Investigative Ophthalmology & Visual Science. Vol. 53; No. 11; pp. 7183-7193; 1552-5783; Consultado en: 2021/04/03/17:34:44. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2127685. Disponible en: 10.1167/iovs.12-9949.
Wang, Yan; Zhang, Hong-Tao; Su, Xing-Li; Deng, Xiu-Ling; Yuan, Bing-Xiang; Zhang, Wei; Wang, Xin-Feng; Yang, Yu-Bai (2010) Experimental diabetes mellitus down-regulates large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle and alters functional conductance. En: Current Neurovascular Research. Vol. 7; No. 2; pp. 75-84; 1875-5739; Disponible en: 10.2174/156720210791184925.
Guéguinou, Maxime; Chantôme, Aurélie; Fromont, Gaëlle; Bougnoux, Philippe; Vandier, Christophe; Potier-Cartereau, Marie (2014) KCa and Ca2+ channels: The complex thought. En: Biochimica et Biophysica Acta (BBA). Calcium Signaling in Health and Disease; Vol. 1843; No. 10; pp. 2322-2333; 0167-4889; Consultado en: 2021/04/05/10:39:10. Disponible en: https://www.sciencedirect.com/science/article/pii/S0167488914000834. Disponible en: 10.1016/j.bbamcr.2014.02.019.
Hage, Travis A.; Salkoff, Lawrence (2012) Sodium-Activated Potassium Channels Are Functionally Coupled to Persistent Sodium Currents. En: The Journal of Neuroscience. Vol. 32; No. 8; pp. 2714-2721; 0270-6474; Consultado en: 2021/04/05/14:03:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319674/. Disponible en: 10.1523/JNEUROSCI.5088-11.2012.
Yi, Fu; Ling, Tian-You; Lu, Tong; Wang, Xiao-Li; Li, Jingchao; Claycomb, William C.; Shen, Win-Kuang; Lee, Hon-Chi (2015) Down-regulation of the Small Conductance Calcium-activated Potassium Channels in Diabetic Mouse Atria*. En: Journal of Biological Chemistry. Vol. 290; No. 11; pp. 7016-7026; 0021-9258; Consultado en: 2021/04/05/20:57:36. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925820767797. Disponible en: 10.1074/jbc.M114.607952.
Zhao, Li-Mei; Wang, Yan; Ma, Xiao-Zhen; Wang, Nan-Ping; Deng, Xiu-Ling (2014) Advanced glycation end products impair K(Ca)3.1-and K(Ca)2.3-mediated vasodilatation via oxidative stress in rat mesenteric arteries. En: Pflugers Archiv: European Journal of Physiology. Vol. 466; No. 2; pp. 307-317; 1432-2013; Disponible en: 10.1007/s00424-013-1324-y.
Gagnon, M. M.; Boisjoly, H. M.; Brunette, I.; Charest, M.; Amyot, M. (1997) Corneal endothelial cell density in glaucoma. En: Cornea. Vol. 16; No. 3; pp. 314-318; 0277-3740
Tarazona, Sonia; Furió-Tarí, Pedro; Turrà, David; Pietro, Antonio Di; Nueda, María José; Ferrer, Alberto; Conesa, Ana (2015) Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. En: Nucleic Acids Research. Vol. 43; No. 21; pp. e140-e140; 0305-1048; Consultado en: 2021/04/24/22:38:09. Disponible en: https://doi.org/10.1093/nar/gkv711. Disponible en: 10.1093/nar/gkv711.
DAVID Functional Annotation Bioinformatics Microarray Analysis. Consultado en: 2021/04/24/23:07:31. Disponible en: https://david.ncifcrf.gov/.
Yu, Tao; Deng, Chunyu; Wu, Ruobin; Guo, Huiming; Zheng, Shaoyi; Yu, Xiyong; Shan, Zhixin; Kuang, Sujuan; Lin, Qiuxiong (2012) Decreased expression of small-conductance Ca2+-activated K+ channels SK1 and SK2 in human chronic atrial fibrillation. En: Life Sciences. Vol. 90; No. 5; pp. 219-227; 0024-3205; Consultado en: 2021/04/25/00:22:49. Disponible en: https://www.sciencedirect.com/science/article/pii/S0024320511005704. Disponible en: 10.1016/j.lfs.2011.11.008.
Bonito, B.; Sauter, D. R. P.; Schwab, A.; Djamgoz, M. B. A.; Novak, I. (2016) KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34. En: Pflügers Archiv. Vol. 468; No. 11; pp. 1865-1875; 1432-2013; Consultado en: 2021/04/25/01:36:47. Disponible en: https://doi.org/10.1007/s00424-016-1891-9. Disponible en: 10.1007/s00424-016-1891-9.
Kopec, Ashley M.; Rivera, Phillip D.; Lacagnina, Michael J.; Hanamsagar, Richa; Bilbo, Staci D. (2017) Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. En: Journal of Neuroscience Methods. Vol. 280; pp. 64-76; 0165-0270; Consultado en: 2021/04/25/02:12:42. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165027017300389. Disponible en: 10.1016/j.jneumeth.2017.02.002.
Ion Transport Function of SLC4A11 in Corneal Endothelium | IOVS | ARVO Journals. Consultado en: 2021/05/09/22:00:06. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2189793.
Jalimarada, Supriya S.; Ogando, Diego G.; Vithana, Eranga N.; Bonanno, Joseph A. (2013) Ion Transport Function of SLC4A11 in Corneal Endothelium. En: Investigative Ophthalmology & Visual Science. Vol. 54; No. 6; pp. 4330-4340; 1552-5783; Consultado en: 2021/05/09/22:00:32. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2189793. Disponible en: 10.1167/iovs.13-11929.
Pedarzani, P.; Stocker, M. (2008) Molecular and cellular basis of small--and intermediate-conductance, calcium-activated potassium channel function in the brain. En: Cellular and molecular life sciences: CMLS. Vol. 65; No. 20; pp. 3196-3217; 1420-682X; Disponible en: 10.1007/s00018-008-8216-x.
SK2 and SK3 Expression Differentially Affect Firing Frequency and Precision in Dopamine Neurons. Consultado en: 2021/05/09/22:12:02. Disponible en: https://www-ncbi-nlm-nih-gov.ez.urosario.edu.co/pmc/articles/PMC3383402/.
Deignan, Jason; Luján, Rafael; Bond, Chris; Riegel, Arthur; Watanabe, Masahiko; Williams, John T.; Maylie, James; Adelman, John P. (2012) SK2 and SK3 Expression Differentially Affect Firing Frequency and Precision in Dopamine Neurons. En: Neuroscience. Vol. 217; pp. 67-76; 0306-4522; Consultado en: 2021/05/09/22:12:04. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383402/. Disponible en: 10.1016/j.neuroscience.2012.04.053.
Gu, Mingxia; Zhu, Yanrong; Yin, Xiaorong; Zhang, Dai-Min (2018) Small-conductance Ca 2+-activated K + channels: insights into their roles in cardiovascular disease. En: Experimental & Molecular Medicine. Vol. 50; No. 4; pp. 1-7; 2092-6413; Consultado en: 2021/05/09/22:24:50. Disponible en: https://www.nature.com/articles/s12276-018-0043-z. Disponible en: 10.1038/s12276-018-0043-z.
Lu, Ling; Timofeyev, Valeriy; Li, Ning; Rafizadeh, Sassan; Singapuri, Anil; Harris, Todd R.; Chiamvimonvat, Nipavan (2009) α-Actinin2 cytoskeletal protein is required for the functional membrane localization of a Ca2+-activated K+ channel (SK2 channel). En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 106; No. 43; pp. 18402-18407; 0027-8424; Consultado en: 2021/05/09/22:46:35. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775294/. Disponible en: 10.1073/pnas.0908207106.
Kim, Tae Yun; Terentyeva, Radmila; Roder, Karim H. F.; Li, Weiyan; Liu, Man; Greener, Ian; Hamilton, Shanna; Polina, Iuliia; Murphy, Kevin R.; Clements, Richard T.; Dudley, Samuel C.; Koren, Gideon; Choi, Bum-Rak; Terentyev, Dmitry (2017) SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. En: Cardiovascular Research. Vol. 113; No. 3; pp. 343-353; 0008-6363; Consultado en: 2021/05/09/22:48:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852621/. Disponible en: 10.1093/cvr/cvx005.
Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M.; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto (2013) Laminar shear stress upregulates endothelial Ca2+-activated K+ channels KCa2.3 and KCa3.1 via a Ca2+/calmodulin-dependent protein kinase kinase/Akt/p300 cascade. En: American Journal of Physiology-Heart and Circulatory Physiology. Vol. 305; No. 4; pp. H484-H493; 0363-6135; Consultado en: 2021/05/09/23:17:04. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpheart.00642.2012. Disponible en: 10.1152/ajpheart.00642.2012.
Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. Consultado en: 2021/05/09/23:19:41. Disponible en: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2005.096818.
D’Arcangelo, Daniela; Scatozza, Francesca; Giampietri, Claudia; Marchetti, Paolo; Facchiano, Francesco; Facchiano, Antonio (2019) Ion Channel Expression in Human Melanoma Samples: In Silico Identification and Experimental Validation of Molecular Targets. En: Cancers. Vol. 11; No. 4; pp. 446 Consultado en: 2021/05/09/23:21:47. Disponible en: https://www.mdpi.com/2072-6694/11/4/446. Disponible en: 10.3390/cancers11040446.
Feranchak, Andrew P.; Doctor, R. Brian; Troetsch, Marlyn; Brookman, Kathryn; Johnson, Sylene M.; Fitz, J. Gregory (2004) Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels. En: Gastroenterology. Vol. 127; No. 3; pp. 903-913; 0016-5085; Disponible en: 10.1053/j.gastro.2004.06.047.
Chantome, Aurelie; Girault, Alban; Potier, Marie; Collin, Christine; Vaudin, Pascal; Pagès, Jean-Christophe; Vandier, Christophe; Joulin, Virginie (2009) KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility. En: Experimental Cell Research. Vol. 315; No. 20; pp. 3620-3630; 1090-2422; Disponible en: 10.1016/j.yexcr.2009.07.021.
Liebau, Stefan; Vaida, Bianca; Proepper, Christian; Grissmer, Stephan; Storch, Alexander; Boeckers, Tobias M.; Dietl, Paul; Wittekindt, Oliver H. (2007) Formation of cellular projections in neural progenitor cells depends on SK3 channel activity. En: Journal of Neurochemistry. Vol. 101; No. 5; pp. 1338-1350; 1471-4159; Consultado en: 2021/05/09/23:30:50. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-4159.2006.04437.x. Disponible en: https://doi.org/10.1111/j.1471-4159.2006.04437.x.
Potier, Marie; Tran, Truong An; Chantome, Aurelie; Girault, Alban; Joulin, Virginie; Bougnoux, Philippe; Vandier, Christophe; Pierre, Fabrice (2010) Altered SK3/KCa2.3-mediated migration in adenomatous polyposis coli (Apc) mutated mouse colon epithelial cells. En: Biochemical and Biophysical Research Communications. Vol. 397; No. 1; pp. 42-47; 1090-2104; Disponible en: 10.1016/j.bbrc.2010.05.046.
Koegel, Heidi; Kaesler, Susanne; Burgstahler, Ralf; Werner, Sabine; Alzheimer, Christian (2003) Unexpected down-regulation of the hIK1 Ca2+-activated K+ channel by its opener 1-ethyl-2-benzimidazolinone in HaCaT keratinocytes. Inverse effects on cell growth and proliferation. En: The Journal of Biological Chemistry. Vol. 278; No. 5; pp. 3323-3330; 0021-9258; Disponible en: 10.1074/jbc.M208914200.
Kaushal, Vikas; Koeberle, Paulo D.; Wang, Yimin; Schlichter, Lyanne C. (2007) The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. En: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. Vol. 27; No. 1; pp. 234-244; 1529-2401; Disponible en: 10.1523/JNEUROSCI.3593-06.2007.
Lauf, Peter K.; Misri, Sandeep; Chimote, Ameet A.; Adragna, Norma C. (2008) Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells. En: American Journal of Physiology-Cell Physiology. Vol. 294; No. 3; pp. C820-C832; 0363-6143; Consultado en: 2021/05/09/23:45:14. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00375.2007. Disponible en: 10.1152/ajpcell.00375.2007.
Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. Consultado en: 2021/05/09/23:45:45. Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/22992678/.
K ca 3.1 Activation Via P2y 2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. Consultado en: 2021/05/09/23:46:41. Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/28659615/.
Robles-Martínez, L.; Garay, E.; Martel-Gallegos, M. G.; Cisneros-Mejorado, A.; Pérez-Montiel, D.; Lara, A.; Arellano, R. O. (2017) Kca3.1 Activation Via P2y2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. En: Scientific Reports. Vol. 7; No. 1; pp. 4340 2045-2322; Disponible en: 10.1038/s41598-017-04292-6.
Sciaccaluga, Miriam; Fioretti, Bernard; Catacuzzeno, Luigi; Pagani, Francesca; Bertollini, Cristina; Rosito, Maria; Catalano, Myriam; D'Alessandro, Giuseppina; Santoro, Antonio; Cantore, Giampaolo; Ragozzino, Davide; Castigli, Emilia; Franciolini, Fabio; Limatola, Cristina (2010) CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity. En: American Journal of Physiology-Cell Physiology. Vol. 299; No. 1; pp. C175-C184; 0363-6143; Consultado en: 2021/05/09/23:52:49. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00344.2009. Disponible en: 10.1152/ajpcell.00344.2009.
Romanenko, Victor G; Nakamoto, Tetsuji; Srivastava, Alaka; Begenisich, Ted; Melvin, James E (2007) Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands. En: The Journal of Physiology. Vol. 581; No. Pt 2; pp. 801-817; 0022-3751; Consultado en: 2021/05/09/23:53:45. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075181/. Disponible en: 10.1113/jphysiol.2006.127498.
Steudel, Friederike A.; Mohr, Corinna J.; Stegen, Benjamin; Nguyen, Hoang Y.; Barnert, Andrea; Steinle, Marc; Beer-Hammer, Sandra; Koch, Pierre; Lo, Wing-Yee; Schroth, Werner; Hoppe, Reiner; Brauch, Hiltrud; Ruth, Peter; Huber, Stephan M.; Lukowski, Robert (2017) SK4 channels modulate Ca2+ signalling and cell cycle progression in murine breast cancer. En: Molecular Oncology. Vol. 11; No. 9; pp. 1172-1188; 1878-0261; Disponible en: 10.1002/1878-0261.12087.
Trinh, Nguyen Thu Ngan; Privé, Anik; Maillé, Emilie; Noël, Josette; Brochiero, Emmanuelle (2008) EGF and K+ channel activity control normal and cystic fibrosis bronchial epithelia repair. En: American Journal of Physiology. Lung Cellular and Molecular Physiology. Vol. 295; No. 5; pp. L866-880; 1040-0605; Disponible en: 10.1152/ajplung.90224.2008.
Vigneault, Patrick; Naud, Patrice; Qi, Xiaoyan; Xiao, Jiening; Villeneuve, Louis; Davis, Darryl R.; Nattel, Stanley (2018) Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells. En: The Journal of Physiology. Vol. 596; No. 12; pp. 2359-2379; 1469-7793; Disponible en: 10.1113/JP275388.
McFerrin, Michael B.; Turner, Kathryn L.; Cuddapah, Vishnu Anand; Sontheimer, Harald (2012) Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. En: American Journal of Physiology. Cell Physiology. Vol. 303; No. 10; pp. C1070-1078; 1522-1563; Disponible en: 10.1152/ajpcell.00040.2012.
Tejada, Maria A.; Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A. (2017) Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes. En: PloS One. Vol. 12; No. 2; pp. e0169914 1932-6203; Disponible en: 10.1371/journal.pone.0169914.
Tajima, Nobuyoshi; Schönherr, Kristina; Niedling, Susanna; Kaatz, Martin; Kanno, Hiroshi; Schönherr, Roland; Heinemann, Stefan H (2006) Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. En: The Journal of Physiology. Vol. 571; No. Pt 2; pp. 349-359; 0022-3751; Consultado en: 2021/05/10/00:11:07. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796787/. Disponible en: 10.1113/jphysiol.2005.096818.
Wang, Jun; Morishima, Shigeru; Okada, Yasunobu (2003) IK channels are involved in the regulatory volume decrease in human epithelial cells. En: American Journal of Physiology-Cell Physiology. Vol. 284; No. 1; pp. C77-C84; 0363-6143; Consultado en: 2021/05/10/01:37:22. Disponible en: http://journals.physiology.org/doi/full/10.1152/ajpcell.00132.2002. Disponible en: 10.1152/ajpcell.00132.2002.
Millership, Joanne E.; Devor, Daniel C.; Hamilton, Kirk L.; Balut, Corina M.; Bruce, Jason I. E.; Fearon, Ian M. (2010) Calcium-activated K+ channels increase cell proliferation independent of K+ conductance. En: American Journal of Physiology-Cell Physiology. Vol. 300; No. 4; pp. C792-C802; 0363-6143; Consultado en: 2021/05/10/01:48:02. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00274.2010. Disponible en: 10.1152/ajpcell.00274.2010.
Sundelacruz, Sarah; Levin, Michael; Kaplan, David L. (2009) Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. En: Stem Cell Reviews and Reports. Vol. 5; No. 3; pp. 231-246; 1558-6804; Consultado en: 2021/05/10/02:00:14. Disponible en: https://doi.org/10.1007/s12015-009-9080-2. Disponible en: 10.1007/s12015-009-9080-2.
Barrett, K. E.; Keely, S. J. (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. En: Annual Review of Physiology. Vol. 62; pp. 535-572; 0066-4278; Disponible en: 10.1146/annurev.physiol.62.1.535.
Bernard, K.; Bogliolo, S.; Soriani, O.; Ehrenfeld, J. (2003) Modulation of calcium-dependent chloride secretion by basolateral SK4-like channels in a human bronchial cell line. En: The Journal of Membrane Biology. Vol. 196; No. 1; pp. 15-31; 0022-2631; Disponible en: 10.1007/s00232-003-0621-3.
Reid, Brian; Zhao, Min (2014) The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. En: Advances in Wound Care. Vol. 3; No. 2; pp. 184-201; 2162-1918; Disponible en: 10.1089/wound.2013.0442.
Justet, Cristian; Chifflet, Silvia; Hernandez, Julio A. (2019) Calcium Oscillatory Behavior and Its Possible Role during Wound Healing in Bovine Corneal Endothelial Cells in Culture. En: BioMed Research International. Vol. 2019; pp. e8647121 2314-6133; Consultado en: 2021/05/10/09:50:27. Disponible en: https://www.hindawi.com/journals/bmri/2019/8647121/. Disponible en: 10.1155/2019/8647121.
Watsky, M. A. (1995) Nonselective cation channel activation during wound healing in the corneal endothelium. En: The American Journal of Physiology. Vol. 268; No. 5 Pt 1; pp. C1179-1185; 0002-9513; Disponible en: 10.1152/ajpcell.1995.268.5.C1179.
Vieira, Ana Carolina; Reid, Brian; Cao, Lin; Mannis, Mark J.; Schwab, Ivan R.; Zhao, Min (2011) Ionic Components of Electric Current at Rat Corneal Wounds. En: PLOS ONE. Vol. 6; No. 2; pp. e17411 1932-6203; Consultado en: 2021/05/10/09:59:58. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017411. Disponible en: 10.1371/journal.pone.0017411.
Yu, Zhihua; Dou, Fangfang; Wang, Yanxia; Hou, Lina; Chen, Hongzhuan (2018) Ca2+-dependent endoplasmic reticulum stress correlation with astrogliosis involves upregulation of KCa3.1 and inhibition of AKT/mTOR signaling. En: Journal of Neuroinflammation. Vol. 15; No. 1; pp. 316 1742-2094; Disponible en: 10.1186/s12974-018-1351-x.
Zundler, Sebastian; Caioni, Massimiliano; Müller, Martina; Strauch, Ulrike; Kunst, Claudia; Woelfel, Gisela (2016) K+ Channel Inhibition Differentially Regulates Migration of Intestinal Epithelial Cells in Inflamed vs. Non-Inflamed Conditions in a PI3K/Akt-Mediated Manner. En: PLOS ONE. Vol. 11; No. 1; pp. e0147736 1932-6203; Consultado en: 2021/05/10/12:56:32. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147736. Disponible en: 10.1371/journal.pone.0147736.
Bhattacharjee, Arin; Joiner, William J.; Wu, Meilin; Yang, Youshan; Sigworth, Fred J.; Kaczmarek, Leonard K. (2003) Slick (Slo2.1), a Rapidly-Gating Sodium-Activated Potassium Channel Inhibited by ATP. En: Journal of Neuroscience. Vol. 23; No. 37; pp. 11681-11691; 0270-6474, 1529-2401; Consultado en: 2021/05/10/14:23:53. Disponible en: https://www.jneurosci.org/content/23/37/11681. Disponible en: 10.1523/JNEUROSCI.23-37-11681.2003.
Bhattacharjee, Arin; von Hehn, Christian A. A.; Mei, Xiaofeng; Kaczmarek, Leonard K. (2005) Localization of the Na+-activated K+ channel Slick in the rat central nervous system. En: The Journal of Comparative Neurology. Vol. 484; No. 1; pp. 80-92; 0021-9967; Disponible en: 10.1002/cne.20462.
Tejada, Maria A.; Stople, Kathleen; Bomholtz, Sofia Hammami; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A. (2014) Cell Volume Changes Regulate Slick (Slo2.1), but Not Slack (Slo2.2) K+ Channels. En: PLOS ONE. Vol. 9; No. 10; pp. e110833 1932-6203; Consultado en: 2021/05/10/14:31:38. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110833. Disponible en: 10.1371/journal.pone.0110833.
Tomasello, Danielle L.; Hurley, Edward; Wrabetz, Lawrence; Bhattacharjee, Arin (2017) Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia. En: Journal of Experimental Neuroscience. Vol. 11; pp. 1179069517726996 1179-0695; Disponible en: 10.1177/1179069517726996.
Smith, Charles O.; Wang, Yves T.; Nadtochiy, Sergiy M.; Miller, James H.; Jonas, Elizabeth A.; Dirksen, Robert T.; Nehrke, Keith; Brookes, Paul S. (2018) Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization. En: FASEB journal: official publication of the Federation of American Societies for Experimental Biology. pp. fj201800139R 1530-6860; Disponible en: 10.1096/fj.201800139R.
KCNMA1 Encoded Cardiac BK Channels Afford Protection against Ischemia-Reperfusion Injury. Consultado en: 2021/05/10/19:11:05. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103402.
Gribkoff, Valentin K.; Starrett, John E.; Dworetzky, Steven I. (2001) Maxi-K Potassium Channels: Form, Function, and Modulation of a Class of Endogenous Regulators of Intracellular Calcium. En: The Neuroscientist. Vol. 7; No. 2; pp. 166-177; 1073-8584; Consultado en: 2021/05/10/19:38:33. Disponible en: https://doi.org/10.1177/107385840100700211. Disponible en: 10.1177/107385840100700211.
Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico (2014) MaxiK channel and cell signalling. En: Pflugers Archiv : European journal of physiology. Vol. 466; No. 5; pp. 875-886; 0031-6768; Consultado en: 2021/05/10/19:50:03. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969412/. Disponible en: 10.1007/s00424-013-1359-0.
Amano, Shiro; Kaji, Yuichi; Mimura, Tatsuya (2010) Biology of corneal endothelial cells in vivo and in vitro. En: Japanese Journal of Ophthalmology. Vol. 54; No. 3; pp. 211-214; 1613-2246; Disponible en: 10.1007/s10384-010-0799-8.
Dawczynski, Jens; Franke, Sibylle; Blum, Marcus; Kasper, Michael; Stein, Günter; Strobel, Jürgen (2002) Advanced glycation end-products in corneas of patients with keratoconus. En: Graefe's Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie. Vol. 240; No. 4; pp. 296-301; 0721-832X; Disponible en: 10.1007/s00417-002-0445-3.
Kase, Satoru; Ishida, Susumu; Rao, Narsing Adupa (2011) Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study. En: Journal of Diabetes Mellitus. Vol. 1; No. 3; pp. 57-62; Consultado en: 2021/05/10/22:24:16. Disponible en: http://www.scirp.org/Journal/Paperabs.aspx?paperid=7107. Disponible en: 10.4236/jdm.2011.13009.
Satoru, Kase; Susumu, Ishida; Narsing Adupa, Rao (2011) Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study. En: Journal of Diabetes Mellitus. Vol. 2011; 2160-5858; Consultado en: 2021/05/10/22:25:41. Disponible en: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=7107. Disponible en: 10.4236/jdm.2011.13009.
Price, Marianne O.; Thompson, Robert W.; Price, Francis W. (2003) Risk factors for various causes of failure in initial corneal grafts. En: Archives of Ophthalmology (Chicago, Ill.: 1960). Vol. 121; No. 8; pp. 1087-1092; 0003-9950; Disponible en: 10.1001/archopht.121.8.1087.
Yu, Alice L.; Kaiser, Michaela; Schaumberger, Markus; Messmer, Elisabeth; Kook, Daniel; Welge-Lussen, Ulrich (2014) Donor-related risk factors and preoperative recipient-related risk factors for graft failure. En: Cornea. Vol. 33; No. 11; pp. 1149-1156; 1536-4798; Disponible en: 10.1097/ICO.0000000000000225.
Price, Marianne O.; Lisek, Marek; Feng, Matthew T.; Price, Francis W. (2017) Effect of Donor and Recipient Diabetes Status on Descemet Membrane Endothelial Keratoplasty Adherence and Survival. En: Cornea. Vol. 36; No. 10; pp. 1184-1188; 1536-4798; Disponible en: 10.1097/ICO.0000000000001305.
Zhao, Han; He, Yan; Ren, Yue-Rong; Chen, Bai-Hua (2019) Corneal alteration and pathogenesis in diabetes mellitus. En: International Journal of Ophthalmology. Vol. 12; No. 12; pp. 1939-1950; 2222-3959; Consultado en: 2021/05/10/23:27:13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901883/. Disponible en: 10.18240/ijo.2019.12.17.
ImageJ. Consultado en: 2021/05/11/09:28:05. Disponible en: https://imagej-nih-gov.ez.urosario.edu.co/ij/.
Ramteke, Pranay; Deb, Ankita; Shepal, Varsha; Bhat, Manoj Kumar (2019) Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. En: Cancers. Vol. 11; No. 9; 2072-6694; Consultado en: 2021/05/12/10:46:09. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770430/. Disponible en: 10.3390/cancers11091402.
Lopez, Rebecca; Arumugam, Arunkumar; Joseph, Riya; Monga, Kanika; Boopalan, Thiyagarajan; Agullo, Pamela; Gutierrez, Christina; Nandy, Sushmita; Subramani, Ramadevi; Rosa, Jose Manuel de la; Lakshmanaswamy, Rajkumar (2013) Hyperglycemia Enhances the Proliferation of Non-Tumorigenic and Malignant Mammary Epithelial Cells through Increased leptin/IGF1R Signaling and Activation of AKT/mTOR. En: PLOS ONE. Vol. 8; No. 11; pp. e79708 1932-6203; Consultado en: 2021/05/12/10:57:24. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079708. Disponible en: 10.1371/journal.pone.0079708.
Li, Wenjie; Zhang, Xuehui; Sang, Hui; Zhou, Ying; Shang, Chunyu; Wang, Yongqing; Zhu, Hong (2019) Effects of hyperglycemia on the progression of tumor diseases. En: Journal of Experimental & Clinical Cancer Research. Vol. 38; No. 1; pp. 327 1756-9966; Consultado en: 2021/05/12/11:32:00. Disponible en: https://doi.org/10.1186/s13046-019-1309-6. Disponible en: 10.1186/s13046-019-1309-6.
Wolf, Gunter (2000) Cell cycle regulation in diabetic nephropathy. En: Kidney International. Diabetic kidney disease research: Where do we stand at the turn of the century?; Vol. 58; pp. S59-S66; 0085-2538; Consultado en: 2021/05/12/15:22:50. Disponible en: https://www.sciencedirect.com/science/article/pii/S0085253815474241. Disponible en: 10.1046/j.1523-1755.2000.07710.x.
Jannière, Laurent; Canceill, Danielle; Suski, Catherine; Kanga, Sophie; Dalmais, Bérengère; Lestini, Roxane; Monnier, Anne-Françoise; Chapuis, Jérôme; Bolotin, Alexander; Titok, Marina; Chatelier, Emmanuelle Le; Ehrlich, S. Dusko (2007) Genetic Evidence for a Link Between Glycolysis and DNA Replication. En: PLOS ONE. Vol. 2; No. 5; pp. e447 1932-6203; Consultado en: 2021/05/12/16:25:47. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000447. Disponible en: 10.1371/journal.pone.0000447.
da Veiga Moreira, Jorgelindo; Peres, Sabine; Steyaert, Jean-Marc; Bigan, Erwan; Paulevé, Loïc; Nogueira, Marcel Levy; Schwartz, Laurent (2015) Cell cycle progression is regulated by intertwined redox oscillators. En: Theoretical Biology and Medical Modelling. Vol. 12; No. 1; pp. 10 1742-4682; Consultado en: 2021/05/12/16:52:31. Disponible en: https://doi.org/10.1186/s12976-015-0005-2. Disponible en: 10.1186/s12976-015-0005-2.
Nagy, Tamás; Fisi, Viktória; Frank, Dorottya; Kátai, Emese; Nagy, Zsófia; Miseta, Attila (2019) Hyperglycemia-Induced Aberrant Cell Proliferation; A Metabolic Challenge Mediated by Protein O-GlcNAc Modification. En: Cells. Vol. 8; No. 9; pp. 999 Consultado en: 2021/05/12/18:28:54. Disponible en: https://www.mdpi.com/2073-4409/8/9/999. Disponible en: 10.3390/cells8090999.
Yoon, Chang Ki; Yoon, Sam Young; Hwang, Jin Sun; Shin, Young Joo (2020) O-GlcNAc Signaling Augmentation Protects Human Corneal Endothelial Cells from Oxidative Stress via AKT Pathway Activation. En: Current Eye Research. Vol. 45; No. 5; pp. 556-562; 0271-3683; Consultado en: 2021/05/12/20:38:11. Disponible en: https://doi.org/10.1080/02713683.2019.1686154. Disponible en: 10.1080/02713683.2019.1686154.
Kruse, Carla R.; Singh, Mansher; Sørensen, Jens A.; Eriksson, Elof; Nuutila, Kristo (2016) The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats. En: Journal of Surgical Research. Vol. 206; No. 2; pp. 418-426; 0022-4804, 1095-8673; Consultado en: 2021/05/12/21:43:59. Disponible en: https://www.journalofsurgicalresearch.com/article/S0022-4804(16)30332-8/abstract. Disponible en: 10.1016/j.jss.2016.08.060.
Slawson, Chad; Zachara, Natasha E.; Vosseller, Keith; Cheung, Win D.; Lane, M. Daniel; Hart, Gerald W. (2005) Perturbations in O-linked β-N-Acetylglucosamine Protein Modification Cause Severe Defects in Mitotic Progression and Cytokinesis*. En: Journal of Biological Chemistry. Vol. 280; No. 38; pp. 32944-32956; 0021-9258; Consultado en: 2021/05/12/22:00:54. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925820791544. Disponible en: 10.1074/jbc.M503396200.
Pahwa, Heena; Khan, Md Touseef; Sharan, Kunal (2020) Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis. En: Molecular and Cellular Biochemistry. Vol. 469; No. 1-2; pp. 109-118; 1573-4919; Disponible en: 10.1007/s11010-020-03732-8.
Hsu, Chih-Chin; Chen, Carl Pai-Chu; Tsai, Wen-Chung; Yu, Shin-Ying; Wang, Jong-Shyan (2011) Measurement of Keratinocyte Migration in Hyperglycemia Media with an Electric Wound-Healing Assay. En: The FASEB Journal. Vol. 25; No. S1; pp. 680.1-680.1; 1530-6860; Consultado en: 2021/05/12/22:47:33. Disponible en: https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.25.1_supplement.680.1. Disponible en: https://doi.org/10.1096/fasebj.25.1_supplement.680.1.
Rikitake, Yoshiyuki; Liao, James K. (2005) Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. En: Circulation. Vol. 111; No. 24; pp. 3261-3268; 1524-4539; Disponible en: 10.1161/CIRCULATIONAHA.105.534024.
Akhtar, R. A.; Chaouchi, K. M. (2004) Effects of Hyperglycemia on Cell Migration and Proliferation, and Phospholipase C1 in Rabbit Corneal Epithelial Cells. En: Investigative Ophthalmology & Visual Science. Vol. 45; No. 13; pp. 3799-3799; 1552-5783; Consultado en: 2021/05/12/23:09:39. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2409333.
Okumura, Naoki; Ueno, Morio; Koizumi, Noriko; Sakamoto, Yuji; Hirata, Kana; Hamuro, Junji; Kinoshita, Shigeru (2009) Enhancement on Primate Corneal Endothelial Cell Survival In Vitro by a ROCK Inhibitor. En: Investigative Ophthalmology & Visual Science. Vol. 50; No. 8; pp. 3680-3687; 1552-5783; Consultado en: 2021/05/12/23:46:58. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2185592. Disponible en: 10.1167/iovs.08-2634.
Koizumi, Noriko; Okumura, Naoki; Ueno, Morio; Nakagawa, Hiroko; Hamuro, Junji; Kinoshita, Shigeru (2013) Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. En: Cornea. Vol. 32; No. 8; pp. 1167-1170; 1536-4798; Disponible en: 10.1097/ICO.0b013e318285475d.
Wang, H. Z.; Wu, K. Y.; Lin, C. P.; Fong, J. C.; Hong, S. J. (1997) Alteration of glucose uptake in cultured human corneal endothelial cells grown in high glucose media via cAMP-dependent pathway. En: The Kaohsiung Journal of Medical Sciences. Vol. 13; No. 9; pp. 566-571; 1607-551X
Stuard, Whitney L.; Titone, Rossella; Robertson, Danielle M. (2020) The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. En: Frontiers in Endocrinology. Vol. 11; 1664-2392; Consultado en: 2021/05/13/21:59:11. Disponible en: https://www.frontiersin.org/articles/10.3389/fendo.2020.00024/full. Disponible en: 10.3389/fendo.2020.00024.
Takahashi, Hiroshi; Ohara, Kunitoshi; Ohmura, Takeo; Takahashi, Ryoki; Zieske, James D (2000) Glucose Transporter 1 Expression in Corneal Wound Repair under High Serum Glucose Level. En: Japanese Journal of Ophthalmology. Vol. 44; No. 5; pp. 470-474; 0021-5155; Consultado en: 2021/05/13/23:47:23. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021515500002227. Disponible en: 10.1016/S0021-5155(00)00222-7.
STRING: functional protein association networks. Consultado en: 2021/05/14/00:07:07. Disponible en: https://string-db.org/.
Philipp, Wolfgang; Speicher, Lilly; Humpel, Christian (2000) Expression of Vascular Endothelial Growth Factor and Its Receptors in Inflamed and Vascularized Human Corneas. En: Investigative Ophthalmology & Visual Science. Vol. 41; No. 9; pp. 2514-2522; 1552-5783; Consultado en: 2021/05/14/11:21:28. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2162302.
Deardorff, Phillip M.; McKay, Tina B.; Wang, Siran; Ghezzi, Chiara E.; Cairns, Dana M.; Abbott, Rosalyn D.; Funderburgh, James L.; Kenyon, Kenneth R.; Kaplan, David L. (2018) Modeling Diabetic Corneal Neuropathy in a 3D In Vitro Cornea System. En: Scientific Reports. Vol. 8; No. 1; pp. 17294 2045-2322; Consultado en: 2021/05/15/01:12:05. Disponible en: https://www.nature.com/articles/s41598-018-35917-z. Disponible en: 10.1038/s41598-018-35917-z.
Kovatchev, Boris P.; Otto, Erik; Cox, Daniel; Gonder-Frederick, Linda; Clarke, William (2006) Evaluation of a New Measure of Blood Glucose Variability in Diabetes. En: Diabetes Care. Vol. 29; No. 11; pp. 2433-2438; 0149-5992, 1935-5548; Consultado en: 2021/05/15/01:22:08. Disponible en: https://care.diabetesjournals.org/content/29/11/2433. Disponible en: 10.2337/dc06-1085.
Olaniyan, Mathew Folaranmi; Babatunde, Elizabeth Moyinoluwa (2016) Preventive (myoglobin, transferrin) and scavenging (superoxide dismutase, glutathione peroxidase) anti-oxidative properties of raw liquid extract of Morinda lucida leaf in the traditional treatment of Plasmodium infection. En: Journal of Natural Science, Biology, and Medicine. Vol. 7; No. 1; pp. 47-53; 0976-9668; Disponible en: 10.4103/0976-9668.175068.
Tinggi, Ujang (2008) Selenium: its role as antioxidant in human health. En: Environmental Health and Preventive Medicine. Vol. 13; No. 2; pp. 102-108; 1342-078X; Consultado en: 2021/05/15/09:26:03. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698273/. Disponible en: 10.1007/s12199-007-0019-4.
Fanger, Christopher M.; Ghanshani, Sanjiv; Logsdon, Naomi J.; Rauer, Heiko; Kalman, Katalin; Zhou, Jianming; Beckingham, Kathy; Chandy, K. George; Cahalan, Michael D.; Aiyar, Jayashree (1999) Calmodulin Mediates Calcium-dependent Activation of the Intermediate Conductance KCa Channel,IKCa1 *. En: Journal of Biological Chemistry. Vol. 274; No. 9; pp. 5746-5754; 0021-9258; Consultado en: 2021/05/15/11:32:45. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925819877189. Disponible en: 10.1074/jbc.274.9.5746.
Wulff, Heike; Castle, Neil A. (2010) Therapeutic potential of KCa3.1 blockers: an overview of recent advances, and promising trends. En: Expert Review of Clinical Pharmacology. Vol. 3; No. 3; pp. 385-396; 1751-2433; Consultado en: 2021/05/15/11:37:25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347644/. Disponible en: 10.1586/ecp.10.11.
Ghanshani, S.; Wulff, H.; Miller, M. J.; Rohm, H.; Neben, A.; Gutman, G. A.; Cahalan, M. D.; Chandy, K. G. (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. En: The Journal of Biological Chemistry. Vol. 275; No. 47; pp. 37137-37149; 0021-9258; Disponible en: 10.1074/jbc.M003941200.
Grgic, Ivica; Eichler, Ines; Heinau, Philipp; Si, Han; Brakemeier, Susanne; Hoyer, Joachim; Köhler, Ralf (2005) Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. En: Arteriosclerosis, Thrombosis, and Vascular Biology. Vol. 25; No. 4; pp. 704-709; 1524-4636; Disponible en: 10.1161/01.ATV.0000156399.12787.5c.
Schilling, Tom; Stock, Christian; Schwab, Albrecht; Eder, Claudia (2004) Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. En: The European Journal of Neuroscience. Vol. 19; No. 6; pp. 1469-1474; 0953-816X; Disponible en: 10.1111/j.1460-9568.2004.03265.x.
Lang, Philipp A.; Kaiser, Stefanie; Myssina, Swetlana; Wieder, Thomas; Lang, Florian; Huber, Stephan M. (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. En: American Journal of Physiology. Cell Physiology. Vol. 285; No. 6; pp. C1553-1560; 0363-6143; Disponible en: 10.1152/ajpcell.00186.2003.
Elliott, James I.; Higgins, Christopher F. (2003) IKCa1 activity is required for cell shrinkage, phosphatidylserine translocation and death in T lymphocyte apoptosis. En: EMBO Reports. Vol. 4; No. 2; pp. 189-194; 1469-221X; Consultado en: 2021/05/15/12:00:05. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315824/. Disponible en: 10.1038/sj.embor.embor722.
Begenisich, Ted; Nakamoto, Tesuji; Ovitt, Catherine E.; Nehrke, Keith; Brugnara, Carlo; Alper, Seth L.; Melvin, James E. (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. En: The Journal of Biological Chemistry. Vol. 279; No. 46; pp. 47681-47687; 0021-9258; Disponible en: 10.1074/jbc.M409627200.
Wulff, Heike; Miller, Mark J.; Hänsel, Wolfram; Grissmer, Stephan; Cahalan, Michael D.; Chandy, K. George (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: A potential immunosuppressant. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 97; No. 14; pp. 8151-8156; 0027-8424; Consultado en: 2021/05/15/12:32:36. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC16685/.
Brugnara, C; Gee, B; Armsby, C C; Kurth, S; Sakamoto, M; Rifai, N; Alper, S L; Platt, O S (1996) Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. En: Journal of Clinical Investigation. Vol. 97; No. 5; pp. 1227-1234; 0021-9738; Consultado en: 2021/05/15/12:52:58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507175/.
K+ channels as targets for specific immunomodulation. Consultado en: 2021/05/15/12:53:21. Disponible en: https://www-ncbi-nlm-nih-gov.ez.urosario.edu.co/pmc/articles/PMC2749963/.
Maezawa, Izumi; Jenkins, David Paul; Jin, Benjamin E.; Wulff, Heike (2012) Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease. En: International Journal of Alzheimer’s Disease. Vol. 2012; pp. e868972 2090-8024; Consultado en: 2021/05/15/20:24:08. Disponible en: https://www.hindawi.com/journals/ijad/2012/868972/. Disponible en: 10.1155/2012/868972.
Huang, Chunling; Yi, Hao; Shi, Ying; Cao, Qinghua; Shi, Yin; Cheng, Delfine; Braet, Filip; Chen, Xin-Ming; Pollock, Carol A. (2021) KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. En: Frontiers in Cell and Developmental Biology. Vol. 9; pp. 573814 2296-634X; Disponible en: 10.3389/fcell.2021.573814.
Zhu, Yan-Rong; Jiang, Xiao-Xin; Zhang, Dai-Min (2019) Critical regulation of atherosclerosis by the KCa3.1 channel and the retargeting of this therapeutic target in in-stent neoatherosclerosis. En: Journal of Molecular Medicine. Vol. 97; No. 9; pp. 1219-1229; 1432-1440; Consultado en: 2021/05/15/23:21:13. Disponible en: https://doi.org/10.1007/s00109-019-01814-9. Disponible en: 10.1007/s00109-019-01814-9.
Su, Xing-Li; Zhang, Hong; Yu, Wei; Wang, Shuang; Zhu, Wei-Jun (2013) Role of KCa3.1 channels in proliferation and migration of vascular smooth muscle cells by diabetic rat serum. En: The Chinese Journal of Physiology. Vol. 56; No. 3; pp. 155-162; 0304-4920; Disponible en: 10.4077/CJP.2013.BAB104.
Lin, Mike T.; Adelman, John P.; Maylie, James (2012) Modulation of endothelial SK3 channel activity by Ca2+-dependent caveolar trafficking. En: American Journal of Physiology-Cell Physiology. Vol. 303; No. 3; pp. C318-C327; 0363-6143; Consultado en: 2021/05/16/01:56:16. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00058.2012. Disponible en: 10.1152/ajpcell.00058.2012.
Roy, J. W.; Cowley, E. A.; Blay, J.; Linsdell, P. (2010) The intermediate conductance Ca2+-activated K+ channel inhibitor TRAM-34 stimulates proliferation of breast cancer cells via activation of oestrogen receptors. En: British Journal of Pharmacology. Vol. 159; No. 3; pp. 650-658; 1476-5381; Disponible en: 10.1111/j.1476-5381.2009.00557.x.
1-EBIO | #E-150 | CAS 10045-45-1. En: Alomone Labs. Consultado en: 2021/05/16/16:54:34. Disponible en: https://www.alomone.com/p/1-ebio/E-150.
Chadha, Preet S.; Liu, Lu; Rikard-Bell, Matt; Senadheera, Sevvandi; Howitt, Lauren; Bertrand, Rebecca L.; Grayson, T. Hilton; Murphy, Timothy V.; Sandow, Shaun L. (2011) Endothelium-Dependent Vasodilation in Human Mesenteric Artery Is Primarily Mediated by Myoendothelial Gap Junctions Intermediate Conductance Calcium-Activated K+ Channel and Nitric Oxide. En: Journal of Pharmacology and Experimental Therapeutics. Vol. 336; No. 3; pp. 701-708; 0022-3565, 1521-0103; Consultado en: 2021/05/16/21:16:58. Disponible en: https://jpet.aspetjournals.org/content/336/3/701. Disponible en: 10.1124/jpet.110.165795.
Maldonado, Oscar; Jenkins, Alexandra; Belalcazar, Helen M.; Hernandez-Cuervo, Helena; Hyman, Katelynn M.; Ladaga, Giannina; Padilla, Lucia; Erausquin, Gabriel A. de (2020) Age-dependent neuroprotective effect of an SK3 channel agonist on excitotoxity to dopaminergic neurons in organotypic culture. En: PLOS ONE. Vol. 15; No. 7; pp. e0223633 1932-6203; Consultado en: 2021/05/16/21:22:09. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223633. Disponible en: 10.1371/journal.pone.0223633.
Spergel, Daniel J. (2007) Calcium and Small-Conductance Calcium-Activated Potassium Channels in Gonadotropin-Releasing Hormone Neurons before, during, and after Puberty. En: Endocrinology. Vol. 148; No. 5; pp. 2383-2390; 0013-7227; Consultado en: 2021/05/16/21:31:39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315592/. Disponible en: 10.1210/en.2006-1693.
Kanawa, Surbhi; Jain, Kalpna; Sagar, Vinod; Yadav, Dinesh K. (2021) Evaluation of changes in corneal endothelium in chronic kidney disease. En: Indian Journal of Ophthalmology. Vol. 69; No. 5; pp. 1080-1083; 0301-4738; Consultado en: 2021/05/17/01:56:10. Disponible en: https://journals.lww.com/ijo/Fulltext/2021/05000/Evaluation_of_changes_in_corneal_endothelium_in.14.aspx. Disponible en: 10.4103/ijo.IJO_1764_20.
Bi, Dan; Toyama, Kazuyoshi; Lemaître, Vincent; Takai, Jun; Fan, Fan; Jenkins, David P.; Wulff, Heike; Gutterman, David D.; Park, Frank; Miura, Hiroto (2013) The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling*. En: Journal of Biological Chemistry. Vol. 288; No. 22; pp. 15843-15853; 0021-9258; Consultado en: 2021/05/18/06:49:21. Disponible en: https://www.sciencedirect.com/science/article/pii/S002192582045971X. Disponible en: 10.1074/jbc.M112.427187.
Manaves, Vlasios; Qin, Wuxuan; Bauer, Amy L.; Rossie, Sandra; Kobayashi, Masakazu; Rane, Stanley G. (2004) Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed. En: BMC Dermatology. Vol. 4; No. 1; pp. 7 1471-5945; Consultado en: 2021/05/18/07:02:24. Disponible en: https://doi.org/10.1186/1471-5945-4-7. Disponible en: 10.1186/1471-5945-4-7.
De Marchi, Umberto; Sassi, Nicola; Fioretti, Bernard; Catacuzzeno, Luigi; Cereghetti, Grazia M.; Szabò, Ildikò; Zoratti, Mario (2009) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. En: Cell Calcium. Vol. 45; No. 5; pp. 509-516; 1532-1991; Disponible en: 10.1016/j.ceca.2009.03.014.
Lee, Elbert L.; Hasegawa, Yuichi; Shimizu, Takahiro; Okada, Yasunobu (2008) IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. En: American Journal of Physiology-Cell Physiology. Vol. 294; No. 6; pp. C1398-C1406; 0363-6143; Consultado en: 2021/05/18/08:01:47. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpcell.00428.2007. Disponible en: 10.1152/ajpcell.00428.2007.
Gospodarowicz, Denis; Mescher, Anthony L.; Birdwell, Charles R. (1977) Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factors. En: Experimental Eye Research. Vol. 25; No. 1; pp. 75-89; 0014-4835; Consultado en: 2021/05/18/22:54:42. Disponible en: https://www.sciencedirect.com/science/article/pii/0014483577902482. Disponible en: 10.1016/0014-4835(77)90248-2.
Zhao, Li-Mei; Zhang, Wei; Wang, Li-Ping; Li, Gui-Rong; Deng, Xiu-Ling (2012) Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. En: Pflügers Archiv. Vol. 464; No. 6; pp. 613-621; 1432-2013; Consultado en: 2021/05/18/23:20:56. Disponible en: https://doi.org/10.1007/s00424-012-1165-0. Disponible en: 10.1007/s00424-012-1165-0.
Catacuzzeno, Luigi; Aiello, Francesco; Fioretti, Bernard; Sforna, Luigi; Castigli, Emilia; Ruggieri, Paola; Tata, Ada Maria; Calogero, Antonella; Franciolini, Fabio (2011) Serum-activated K and Cl currents underlay U87-MG glioblastoma cell migration. En: Journal of Cellular Physiology. Vol. 226; No. 7; pp. 1926-1933; 1097-4652; Disponible en: 10.1002/jcp.22523.
Cuddapah, Vishnu Anand; Habela, Christa W.; Watkins, Stacey; Moore, Lindsay S.; Barclay, Tia-Tabitha C.; Sontheimer, Harald (2012) Kinase activation of ClC-3 accelerates cytoplasmic condensation during mitotic cell rounding. En: American Journal of Physiology. Cell Physiology. Vol. 302; No. 3; pp. C527-538; 1522-1563; Disponible en: 10.1152/ajpcell.00248.2011.
Catacuzzeno, Luigi; Franciolini, Fabio (2018) Role of KCa3.1 Channels in Modulating Ca2+ Oscillations during Glioblastoma Cell Migration and Invasion. En: International Journal of Molecular Sciences. Vol. 19; No. 10; pp. 2970 Consultado en: 2021/05/19/01:05:35. Disponible en: https://www.mdpi.com/1422-0067/19/10/2970. Disponible en: 10.3390/ijms19102970.
Gao, Ya-dong; Hanley, Peter J.; Rinné, Susanne; Zuzarte, Marylou; Daut, Jurgen (2010) Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages. En: Cell Calcium. Vol. 48; No. 1; pp. 19-27; 1532-1991; Disponible en: 10.1016/j.ceca.2010.06.002.
Fioretti, Bernard; Catacuzzeno, Luigi; Sforna, Luigi; Aiello, Francesco; Pagani, Francesca; Ragozzino, Davide; Castigli, Emilia; Franciolini, Fabio (2009) Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel. En: American Journal of Physiology. Cell Physiology. Vol. 297; No. 1; pp. C102-110; 1522-1563; Disponible en: 10.1152/ajpcell.00354.2008.
Jakakul, Chanon; Kanjanasirirat, Phongthon; Muanprasat, Chatchai (2021) Development of a Cell-Based Assay for Identifying KCa3.1 Inhibitors Using Intestinal Epithelial Cell Lines. En: SLAS DISCOVERY: Advancing the Science of Drug Discovery. Vol. 26; No. 3; pp. 439-449; 2472-5552; Consultado en: 2021/05/19/01:51:41. Disponible en: https://doi.org/10.1177/2472555220950661. Disponible en: 10.1177/2472555220950661.
Liu, Yu; Zhao, Liang; Ma, Wenya; Cao, Xuefeng; Chen, Hongyang; Feng, Dan; Liang, Jing; Yin, Kun; Jiang, Xiaofeng (2015) The Blockage of KCa3.1 Channel Inhibited Proliferation, Migration and Promoted Apoptosis of Human Hepatocellular Carcinoma Cells. En: Journal of Cancer. Vol. 6; No. 7; pp. 643-651; 1837-9664; Consultado en: 2021/05/19/01:59:47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466414/. Disponible en: 10.7150/jca.11913.
Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. En: Immunology Letters. Vol. 171; pp. 60-69; 0165-2478; Consultado en: 2021/05/19/09:30:31. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165247816300128. Disponible en: 10.1016/j.imlet.2016.02.003.
Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. En: Immunology Letters. Vol. 171; pp. 60-69; 0165-2478; Consultado en: 2021/05/19/09:48:32. Disponible en: https://www.sciencedirect.com/science/article/pii/S0165247816300128. Disponible en: 10.1016/j.imlet.2016.02.003.
Aketa, Naohiko; Uchino, Miki; Kawashima, Motoko; Uchino, Yuichi; Yuki, Kenya; Ozawa, Yoko; Sasaki, Mariko; Yamagishi, Kazumasa; Sawada, Norie; Tsugane, Shoichiro; Tsubota, Kazuo; Iso, Hiroyasu (2021) Myopia, corneal endothelial cell density and morphology in a Japanese population-based cross-sectional study: the JPHC-NEXT Eye Study. En: Scientific Reports. Vol. 11; No. 1; pp. 6366 2045-2322; Consultado en: 2021/05/19/23:15:15. Disponible en: https://www.nature.com/articles/s41598-021-85617-4. Disponible en: 10.1038/s41598-021-85617-4.
Cárdenas Díaz, Taimi; Corcho Arévalo, Yeni; Torres Ortega, Rosario; Capote Cabrera, Armando; Hernández López, Iván; Cruz Izquierdo, Dunia (2013) Caracterización del endotelio corneal en pacientes con indicación de cirugía de catarata. En: Revista Cubana de Oftalmología. Vol. 26; No. 1; pp. 39-47; 0864-2176; Consultado en: 2021/05/19/23:15:47. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0864-21762013000100005&lng=es&nrm=iso&tlng=es.
Liu, Cailing; Miyajima, Taiga; Melangath, Geetha; Miyai, Takashi; Vasanth, Shivakumar; Deshpande, Neha; Kumar, Varun; Ong Tone, Stephan; Gupta, Reena; Zhu, Shan; Vojnovic, Dijana; Chen, Yuming; Rogan, Eleanor G.; Mondal, Bodhiswatta; Zahid, Muhammad; Jurkunas, Ula V. (2020) Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 117; No. 1; pp. 573-583; 0027-8424; Consultado en: 2021/05/19/23:16:20. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955350/. Disponible en: 10.1073/pnas.1912546116.
R: The R Project for Statistical Computing. Consultado en: 2021/06/02/17:05:44. Disponible en: https://www.r-project.org/.
Feizi, Sepehr (2018) Corneal endothelial cell dysfunction: etiologies and management. En: Therapeutic Advances in Ophthalmology. Vol. 10; 2515-8414; Consultado en: 2021/06/02/19:50:34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293368/. Disponible en: 10.1177/2515841418815802.
Anbar, Mohamed; Mohamed Mostafa, Engy; Elhawary, Ashraf Mostafa; Awny, Islam; Farouk, Mahmoud Mohamed; Mounir, Amr (2019) Evaluation of Corneal Higher-Order Aberrations by Scheimpflug–Placido Topography in Patients with Different Refractive Errors: A Retrospective Observational Study. En: Journal of Ophthalmology. Vol. 2019; 2090-004X; Consultado en: 2021/06/02/21:52:31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589193/. Disponible en: 10.1155/2019/5640356.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
La córnea es el lente que protege la superficie anterior del ojo y su transparencia es clave para permitir la visión. Esta característica en gran medida está determinada por la actividad de las células de su capa más profunda, el endotelio corn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e7d3be579f186636b5cb2747a8a3e51