Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Kadir Akbudak"'
Autor:
Mark Gates, Asim YarKhan, Dalal Sukkari, Kadir Akbudak, Sebastien Cayrols, Daniel Bielich, Ahmad Abdelfattah, Mohammed Al Farhan, Jack Dongarra
Publikováno v:
Kadir Akbudak
Autor:
Kadir Akbudak, David E. Keyes, Rached Abdelkhalak, Hatem Ltaief, V. Etienne, Thierry Tonellot
Publikováno v:
The International Journal of High Performance Computing Applications. 34:377-393
The aim of this study is to design and implement an asynchronous computational scheme for solving the acoustic wave propagation equation with absorbing boundary conditions (ABCs) in the context of seismic imaging applications. While the convolutional
Autor:
Yu Pei, Kadir Akbudak, A. Mikhalev, Qinglei Cao, David E. Keyes, Jack Dongarra, George Bosilca, Hatem Ltaief
Publikováno v:
Cao, Q, Pei, Y, Akbudak, K, Mikhalev, A, Bosilca, G, Ltaief, H, Keyes, D & Dongarra, J 2020, Extreme-Scale Task-Based Cholesky Factorization Toward Climate and Weather Prediction Applications . in PASC '20: Proceedings of the Platform for Advanced Scientific Computing Conference . pp. 1-11 . https://doi.org/10.1145/3394277.3401846
PASC
PASC
Climate and weather can be predicted statistically via geospatial Maximum Likelihood Estimates (MLE), as an alternative to running large ensembles of forward models. The MLE-based iterative optimization procedure requires the solving of large-scale l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::309d88e859f4a1b8e9c3d427c8aea121
https://www.research.manchester.ac.uk/portal/en/publications/extremescale-taskbased-cholesky-factorization-toward-climate-and-weather-prediction-applications(e7d819e0-22f1-4ff4-aa78-61f481293973).html
https://www.research.manchester.ac.uk/portal/en/publications/extremescale-taskbased-cholesky-factorization-toward-climate-and-weather-prediction-applications(e7d819e0-22f1-4ff4-aa78-61f481293973).html
Autor:
Kadir Akbudak, Hakan Bagci, Rui Chen, Hatem Ltaief, Noha Al-Harthi, David E. Keyes, Rabab Alomairy
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030507428
We design and develop a new high performance implementation of a fast direct LU-based solver using low-rank approximations on massively parallel systems. The LU factorization is the most time-consuming step in solving systems of linear equations in t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f6192a8fbd5d228c3cb3dce35ba3833b
https://doi.org/10.1007/978-3-030-50743-5_11
https://doi.org/10.1007/978-3-030-50743-5_11
Autor:
A. Mikhalev, Thomas Herauldt, Kadir Akbudak, Jack Dongarra, Yu Pei, Hatem Ltaief, Quinglei Cao, George Bosilca, David E. Keyes
Publikováno v:
2019 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools).
This paper highlights the necessary development of new instrumentation tools within the PaRSE task-based runtime system to leverage the performance of low-rank matrix computations. In particular, the tile low-rank (TLR) Cholesky factorization represe
Autor:
David E. Keyes, Hatem Ltaief, Rached Abdelkhalak, Thierry Tonellot, Kadir Akbudak, V. Etienne
Publikováno v:
Day 3 Wed, March 20, 2019.
This paper describes the application of high performance asynchronous stencil computations for 3D acoustic modeling on a synthetic land survey. Using the Finite-Difference Time-Domain (FDTD) method, a parallel Multicore Wavefront Diamond-tiling (MWD)
Autor:
Rached Abdelkhalak, David E. Keyes, Hatem Ltaief, V. Etienne, Kadir Akbudak, Thierry Tonellot
Publikováno v:
Scopus-Elsevier
Summary This paper describes two methods to improve the performance of a FDTD solver for the first order formulation of the 3D acoustic wave equation. Based on spatial and temporal cache blocking techniques, these methods enable to maximize bandwidth
Publikováno v:
IEEE Transactions on Parallel and Distributed Systems
There exist graph/hypergraph partitioning-based row/column reordering methods for encoding either spatial or temporal locality for sparse matrix-vector multiplication (SpMV) operations. Spatial and temporal hypergraph models in these methods are exte
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7785a2f2c28624882edc174a3c9ee780
https://hdl.handle.net/11693/50563
https://hdl.handle.net/11693/50563
Publikováno v:
Akbudak, Kadir; Selvitopi, Oguz; & Aykanat, Cevdet. (2018). Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication. ACM Transactions on Parallel Computing, 4(3), 1-34. doi: 10.1145/3155292. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/8gv8w406
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing, vol 4, iss 3
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing, vol 4, iss 3
We investigate outer-product--parallel, inner-product--parallel, and row-by-row-product--parallel formulations of sparse matrix-matrix multiplication (SpGEMM) on distributed memory architectures. For each of these three formulations, we propose a hyp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ca184265f193e1a5f2a94412c7e67f9
http://www.escholarship.org/uc/item/8gv8w406
http://www.escholarship.org/uc/item/8gv8w406
Publikováno v:
Euro-Par 2018: Parallel Processing ISBN: 9783319969824
Euro-Par
Euro-Par
Exploiting data sparsity in dense matrices is an algorithmic bridge between architectures that are increasingly memory-austere on a per-core basis and extreme-scale applications. In this work, we leverage the Hierarchical matrix Computations on Manyc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0bb6dc9149a91015e1e6470b0253153e
https://doi.org/10.1007/978-3-319-96983-1_51
https://doi.org/10.1007/978-3-319-96983-1_51