Zobrazeno 1 - 10
of 183
pro vyhledávání: '"Kadets, Vladimir"'
We introduce and study the notion of generating operators as those norm-one operators $G\colon X\longrightarrow Y$ such that for every $0<\delta<1$, the set $\{x\in X\colon \|x\|\leq 1,\ \|Gx\|>1-\delta\}$ generates the unit ball of $X$ by closed con
Externí odkaz:
http://arxiv.org/abs/2306.02645
Autor:
Kadets, Vladimir, Zavarzina, Olesia
We address pairs $(X, Y)$ of metric spaces with the following property: for every mapping $f: X \to Y$ the existence of points $x, y \in X$ with $d(f(x),f(y)) > d(x,y)$ implies the existence of $\widetilde{x}, \widetilde{y}\in X$ for which $d(f(\wide
Externí odkaz:
http://arxiv.org/abs/2301.06589
We study orthogonally additive operators between Riesz spaces without the Dedekind completeness assumption on the range space. Our first result gives necessary and sufficient conditions on a pair of Riesz spaces $(E,F)$ for which every orthogonally a
Externí odkaz:
http://arxiv.org/abs/2210.09720
Autor:
Kadets, Vladimir, Roldán, Óscar
Given a pointed metric space $M$, we study when there exist $n$-dimensional linear subspaces of $\operatorname{Lip}_0(M)$ consisting of strongly norm-attaining Lipschitz functionals, for $n\in\mathbb{N}$. We show that this is always the case for infi
Externí odkaz:
http://arxiv.org/abs/2202.06855
Autor:
Banakh, Taras, Kadets, Vladimir
Publikováno v:
Axioms 11:1 (2022), 13
Let $A,X,Y$ be Banach spaces and $A\times X\to Y$, $(a,x)\mapsto ax$, be a continuous bilinear function, called a *Banach action*. We say that this action *preserves unconditional convergence* if for every bounded sequence $(a_n)_{n\in\omega}$ in $A$
Externí odkaz:
http://arxiv.org/abs/2111.14253
Autor:
Kadets, Vladimir, Seliutin, Dmytro
We study completeness of a topological vector space with respect to different filters on the set N of all naturals. In the metrizable case all these kinds of completeness are the same, but in non-metrizable case the situation changes. For example, a
Externí odkaz:
http://arxiv.org/abs/2106.15192
Publikováno v:
Journal of Mathematical Analysis and Applications, Available online 8 September 2021, 125652
For a Banach space $X$ we demonstrate the equivalence of the following two properties: (1) $X$ is B-convex (that is, possesses a nontrivial infratype), and (2) if ${F: [0,1] \to 2^{X} \setminus \{\varnothing\}}$ is a {multifunction}, $\mathrm{conv} F
Externí odkaz:
http://arxiv.org/abs/2105.10681
Autor:
Kadets, Vladimir, Seliutin, Dmytro
Using a new concept of conglomerated filter we demonstrate in a purely combinatorial way that none of Erd\"{o}s-Ulam filters or summable filters can be generated by a single statistical measure and consequently they cannot be represented as intersect
Externí odkaz:
http://arxiv.org/abs/2012.02866
Autor:
Kadets, Vladimir
Publikováno v:
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 149, Number 6, June 2021, Pages 2579-2582
We demonstrate the result stated in the title, thus answering an open question asked by Julio Becerra Guerrero, Gin\'es L\'opez-P\'erez and Abraham Rueda Zoca in J. Conv. Anal. \textbf{25}, no. 3 (2018).
Comment: 4 pages
Comment: 4 pages
Externí odkaz:
http://arxiv.org/abs/2008.07258