Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Kaczmarzyk, Jakub R."'
Foundation models for computational pathology have shown great promise for specimen-level tasks and are increasingly accessible to researchers. However, specimen-level models built on these foundation models remain largely unavailable, hindering thei
Externí odkaz:
http://arxiv.org/abs/2501.05945
Introduction: Deep learning models hold great promise for digital pathology, but their opaque decision-making processes undermine trust and hinder clinical adoption. Explainable AI methods are essential to enhance model transparency and reliability.
Externí odkaz:
http://arxiv.org/abs/2409.03080
Autor:
Kaczmarzyk, Jakub R., O'Callaghan, Alan, Inglis, Fiona, Kurc, Tahsin, Gupta, Rajarsi, Bremer, Erich, Bankhead, Peter, Saltz, Joel H.
The field of digital pathology has seen a proliferation of deep learning models in recent years. Despite substantial progress, it remains rare for other researchers and pathologists to be able to access models published in the literature and apply th
Externí odkaz:
http://arxiv.org/abs/2309.04631
Autor:
Kaczmarzyk, Jakub R., Kurc, Tahsin M., Abousamra, Shahira, Gupta, Rajarsi, Saltz, Joel H., Koo, Peter K.
Histopathology remains the gold standard for diagnosis of various cancers. Recent advances in computer vision, specifically deep learning, have facilitated the analysis of histopathology images for various tasks, including immune cell detection and m
Externí odkaz:
http://arxiv.org/abs/2206.06862
Autor:
Hasan, Mahmudul, Kaczmarzyk, Jakub R., Paredes, David, Oblein, Lyanne, Oentoro, Jaymie, Abousamra, Shahira, Horowitz, Michael, Samaras, Dimitris, Chen, Chao, Kurc, Tahsin, Shroyer, Kenneth R., Saltz, Joel
Understanding the impact of tumor biology on the composition of nearby cells often requires characterizing the impact of biologically distinct tumor regions. Biomarkers have been developed to label biologically distinct tumor regions, but challenges
Externí odkaz:
http://arxiv.org/abs/2204.12283
Autor:
McClure, Patrick, Rho, Nao, Lee, John A., Kaczmarzyk, Jakub R., Zheng, Charles, Ghosh, Satrajit S., Nielson, Dylan, Thomas, Adam G., Bandettini, Peter, Pereira, Francisco
In this paper, we describe a Bayesian deep neural network (DNN) for predicting FreeSurfer segmentations of structural MRI volumes, in minutes rather than hours. The network was trained and evaluated on a large dataset (n = 11,480), obtained by combin
Externí odkaz:
http://arxiv.org/abs/1812.01719
Autor:
McClure, Patrick, Zheng, Charles Y., Kaczmarzyk, Jakub R., Lee, John A., Ghosh, Satrajit S., Nielson, Dylan, Bandettini, Peter, Pereira, Francisco
Collecting the large datasets needed to train deep neural networks can be very difficult, particularly for the many applications for which sharing and pooling data is complicated by practical, ethical, or legal concerns. However, it may be the case t
Externí odkaz:
http://arxiv.org/abs/1805.10863
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Boaro, Alessandro1,2 (AUTHOR) alessandro.boaro@univr.it, Kaczmarzyk, Jakub R.3,4 (AUTHOR), Kavouridis, Vasileios K.1 (AUTHOR), Harary, Maya1,5 (AUTHOR), Mammi, Marco1 (AUTHOR), Dawood, Hassan1,6 (AUTHOR), Shea, Alice7 (AUTHOR), Cho, Elise Y.1 (AUTHOR), Juvekar, Parikshit6 (AUTHOR), Noh, Thomas6 (AUTHOR), Rana, Aakanksha1,3 (AUTHOR), Ghosh, Satrajit3 (AUTHOR) satra@mit.edu, Arnaout, Omar1,6 (AUTHOR)
Publikováno v:
Scientific Reports. 9/14/2022, Vol. 12 Issue 1, p1-11. 11p.
Autor:
Kaczmarzyk, Jakub R., O'Callaghan, Alan, Inglis, Fiona, Gat, Swarad, Kurc, Tahsin, Gupta, Rajarsi, Bremer, Erich, Bankhead, Peter, Saltz, Joel H.
Publikováno v:
NPJ Precision Oncology; 1/10/2024, Vol. 8 Issue 1, p1-5, 5p