Zobrazeno 1 - 10
of 113
pro vyhledávání: '"Kaan Inal"'
Autor:
Juliane Blarr, Steffen Klinder, Wilfried V. Liebig, Kaan Inal, Luise Kärger, Kay A. Weidenmann
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Abstract Computed tomography images are of utmost importance when characterizing the heterogeneous and complex microstructure of discontinuously fiber reinforced polymers. However, the devices are expensive and the scans are time- and energy-intensiv
Externí odkaz:
https://doaj.org/article/1b555e6e0c2e4e069e80725e670cf734
Autor:
YubRaj Paudel, Deepesh Giri, Matthew W. Priddy, Christopher D. Barrett, Kaan Inal, Mark A. Tschopp, Hongjoo Rhee, Haitham El Kadiri
Publikováno v:
Metals, Vol 11, Iss 9, p 1373 (2021)
Owing to its ability to incorporate Schmid’s law at each integration point, crystal plasticity has proven a powerful tool to simulate and predict the slip behavior at the grain level and the ensuing heterogeneous stress/strain localization and text
Externí odkaz:
https://doaj.org/article/cef050f9e4794b0a988b756b2c743d98
Autor:
Raja K. Mishra, Jaspreet S. Nagra, Abhijit Brahme, Kaan Inal, Ricardo A. Lebensohn, Julie Lévesque
Publikováno v:
International Journal of Plasticity. 125:210-234
This paper presents a new full-field, efficient and mesh-free numerical framework to model microstructure evolution, dynamic recrystallization (DRX) and formability in hexagonal closed-packed (HCP) metals such as magnesium alloys at warm temperatures
Autor:
Joseph Indeck, Krista R. Limmer, Haitham El Kadiri, Christopher D. Barrett, Hongjoo Rhee, Wilburn R. Whittington, Kaan Inal, Kavan Hazeli, Matthew W. Priddy, YubRaj Paudel
Publikováno v:
Acta Materialia. 183:438-451
We experimentally and numerically examined the localization behavior of { 10 1 ¯ 2 } extension twins in strongly and weakly textured AZ31 and ZEK100 magnesium alloys as they depart from the surface toward the center of the sheet under the mechanical
Publikováno v:
The Minerals, Metals & Materials Series ISBN: 9783031062117
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::845a44c0eb22be0e222ae1a7573af61e
https://doi.org/10.1007/978-3-031-06212-4_48
https://doi.org/10.1007/978-3-031-06212-4_48
Publikováno v:
The Minerals, Metals & Materials Series ISBN: 9783031062117
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b0b9e47486a4fcef8ef78d72f3cf1760
https://doi.org/10.1007/978-3-031-06212-4_5
https://doi.org/10.1007/978-3-031-06212-4_5
Publikováno v:
International Journal of Plasticity. 157:103374
Publikováno v:
International Journal of Plasticity. 120:205-219
Machine learning techniques are widely used to understand and predict data trends and therefore can provide a huge computational advantage over conventional numerical techniques. In this work, an artificial neural network (ANN) model is coupled with
Publikováno v:
Thin-Walled Structures. 140:516-532
Automakers are developing new lightweight aluminum alloys for automotive structures to reduce vehicle weight. However, these alloys require extensive mechanical characterization for accurate calibration of a numerical model, which is often a painstak
Publikováno v:
International Journal of Plasticity. 117:93-121
Bending is an important strain path in various metal forming operations as well as vehicle crashworthiness. In the present study, the bending behavior of an extruded aluminum alloy AA6063-T6 is investigated using wrap bending tests. The focus of the