Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Kaan Öcal"'
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
Abstract Cells are the fundamental units of life, and like all life forms, they change over time. Changes in cell state are driven by molecular processes; of these many are initiated when molecule numbers reach and exceed specific thresholds, a chara
Externí odkaz:
https://doaj.org/article/a6d274e70b7c42eeb9bb212309241b86
Publikováno v:
iScience, Vol 25, Iss 9, Pp 105010- (2022)
Summary: The Chemical Master Equation (CME) provides an accurate description of stochastic biochemical reaction networks in well-mixed conditions, but it cannot be solved analytically for most systems of practical interest. Although Monte Carlo metho
Externí odkaz:
https://doaj.org/article/042e27c8cb8146ebb1d8b1da905489ad
Autor:
Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Öcal, Giacomo Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels, David S Greenberg, Jakob H Macke
Publikováno v:
eLife, Vol 9 (2020)
Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challen
Externí odkaz:
https://doaj.org/article/fe7139bde6d64681b1cc8eb1344b5903
Publikováno v:
Öcal, K, Sanguinetti, G & Grima, R 2023, ' Model reduction for the chemical master equation : An information-theoretic approach ', Journal of Chemical Physics, vol. 158, no. 11, 114113 . https://doi.org/10.1063/5.0131445
The complexity of mathematical models in biology has rendered model reduction an essential tool in the quantitative biologist’s toolkit. For stochastic reaction networks described using the Chemical Master Equation, commonly used methods include ti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::732b0592ff4a4c32b6a94129a67e4822
https://hdl.handle.net/20.500.11820/8d336de3-e537-40a5-aff7-5e53835f77cc
https://hdl.handle.net/20.500.11820/8d336de3-e537-40a5-aff7-5e53835f77cc
Publikováno v:
Öcal, K, Gutmann, M U, Sanguinetti, G & Grima, R 2022, ' Inference and Uncertainty Quantification of Stochastic Gene Expression via Synthetic Models ', Journal of the Royal Society. Interface, vol. 19, no. 192, 20220153 . https://doi.org/10.1098/rsif.2022.0153
Estimating uncertainty in model predictions is a central task in quantitative biology. Biological models at the single-cell level are intrinsically stochastic and nonlinear, creating formidable challenges for their statistical estimation which inevit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::15203e84febbfa0bda70a62b222f1382
https://doi.org/10.1101/2022.01.25.477666
https://doi.org/10.1101/2022.01.25.477666
Autor:
Marcel Nonnenmacher, Tim P. Vogels, Michael Deistler, Chaitanya Chintaluri, David S. Greenberg, Pedro J. Gonçalves, Giacomo Bassetto, Kaan Öcal, William F Podlaski, Sara A Haddad, Jan-Matthis Lueckmann, Jakob H. Macke
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0d0f457c3df2afb5dbd159272b4a7462
https://doi.org/10.7554/elife.56261.sa2
https://doi.org/10.7554/elife.56261.sa2
Autor:
Sara A Haddad, Marcel Nonnenmacher, Tim P. Vogels, Jakob H. Macke, William F Podlaski, Chaitanya Chintaluri, Michael Deistler, David S. Greenberg, Pedro J. Gonçalves, Jan-Matthis Lueckmann, Giacomo Bassetto, Kaan Öcal
Publikováno v:
Gonçalves, P.J.; Lueckmann, J.-M.; Deistler, M.; Nonnenmacher, M.; Öcal, K.; Bassetto, G.; Chintaluri, C.; Podlaski, W.F.; Haddad, S.A.; Vogels, T.P.; Greenberg, D.S.; Macke, J.H.: Training deep neural density estimators to identify mechanistic models of neural dynamics. In: eLife. Vol. 9 (2020) e56261. (DOI: /10.7554/eLife.56261)
eLife
bioRxiv : the preprint server for biology
eLife, Vol 9 (2020)
eLife
bioRxiv : the preprint server for biology
eLife, Vol 9 (2020)
Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e10da516d611f90ab9af20407e9c3e65
https://publications.hereon.de/id/50573
https://publications.hereon.de/id/50573
Publikováno v:
Öcal, K, Grima, R & Sanguinetti, G 2019, ' Parameter estimation for biochemical reaction networks using Wasserstein distances ', Journal of Physics A: Mathematical and Theoretical, vol. 53, no. 3, 034002, pp. 1-23 . https://doi.org/10.1088/1751-8121/ab5877
We present a method for estimating parameters in stochastic models of biochemical reaction networks by fitting steady-state distributions using Wasserstein distances. We simulate a reaction network at different parameter settings and train a Gaussian
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b6373bed620ff1e8ffc3b37eb4ab92a6
Publikováno v:
Computational Methods in Systems Biology ISBN: 9783030313036
CMSB
CMSB
Modern experimental methods such as flow cytometry and fluorescence in-situ hybridization (FISH) allow the measurement of cell-by-cell molecule numbers for RNA, proteins and other substances for large numbers of cells at a time, opening up new possib
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::257fb59bb5acbb0a697e57c7ad6f8c27
https://doi.org/10.1007/978-3-030-31304-3_24
https://doi.org/10.1007/978-3-030-31304-3_24
Publikováno v:
Journal of Physics A: Mathematical & Theoretical; 1/24/2020, Vol. 53 Issue 3, p1-1, 1p