Zobrazeno 1 - 10
of 104
pro vyhledávání: '"KURBATOVA, I. A."'
Autor:
Kurbatov, V. G., Kurbatova, I. V.
Let $B$ and $C$ be square complex matrices. The differential equation \begin{equation*} x''(t)+Bx'(t)+Cx(t)=f(t) \end{equation*} is considered. A solvent is a matrix solution $X$ of the equation $X^2+BX+C=\mathbf0$. A pair of solvents $X$ and $Z$ is
Externí odkaz:
http://arxiv.org/abs/2405.07210
Let $A$ be a square complex matrix; $z_1$, ..., $z_{N}\in\mathbb C$ be arbitrary (possibly repetitive) points of interpolation; $f$ be an analytic function defined on a neighborhood of the convex hull of the union of the spectrum $\sigma(A)$ of the m
Externí odkaz:
http://arxiv.org/abs/2108.02036
Let $T$ be a square matrix with a real spectrum, and let $f$ be an analytic function. The problem of the approximate calculation of $f(T)$ is discussed. Applying the Schur triangular decomposition and the reordering, one can assume that $T$ is triang
Externí odkaz:
http://arxiv.org/abs/2105.15173
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kurbatov, V. G., Kurbatova, I. V.
An estimate of Green's function of the bounded solutions problem for the ordinary differential equation $x'(t)-Bx(t)=f(t)$ is proposed. It is assumed that the matrix coefficient $B$ is triangular. This estimate is a generalization of the estimate of
Externí odkaz:
http://arxiv.org/abs/1901.00792
Autor:
Kurbatov, V. G., Kurbatova, I. V.
Let $A$ be a square complex matrix, $z_1$, ..., $z_{n}\in\mathbb C$ be (possibly repetitive) points of interpolation, $f$ be analytic in a neighborhood of the convex hull of the union of the spectrum of $A$ and the points $z_1$, ..., $z_{n}$, and $p$
Externí odkaz:
http://arxiv.org/abs/1812.01358
Autor:
Kurbatov, V. G., Kurbatova, I. V.
It is known that the equation $x'(t)=Ax(t)+f(t)$, where $A$ is a bounded linear operator, has a unique bounded solution $x$ for any bounded continuous free term~$f$ if and only if the spectrum of the coefficient $A$ does not intersect the imaginary a
Externí odkaz:
http://arxiv.org/abs/1804.01022
Autor:
Kurbatov, V. G., Kurbatova, I. V.
An analog of the Gelfand--Shilov estimate of the matrix exponential is proved for Green's function of the problem of bounded solutions of the ordinary differential equation $x'(t)-Ax(t)=f(t)$.
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
http://arxiv.org/abs/1705.07462
Autor:
Kurbatov, V. G., Kurbatova, I. V.
It is well known that the equation $x'(t)=Ax(t)+f(t)$, where $A$ is a square matrix, has a unique bounded solution $x$ for any bounded continuous free term $f$, provided the coefficient $A$ has no eigenvalues on the imaginary axis. This solution can
Externí odkaz:
http://arxiv.org/abs/1704.07317
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.