Zobrazeno 1 - 10
of 55
pro vyhledávání: '"KURAUSKAS, VALENTAS"'
In this paper we give anticoncentration bounds for sums of independent random vectors in finite-dimensional vector spaces. In particular, we asymptotically establish a conjecture of Leader and Radcliffe (1994) and a question of Jones (1978). The high
Externí odkaz:
http://arxiv.org/abs/2306.11904
Autor:
Janson, Svante, Kurauskas, Valentas
We give a simple proof of a generalization of an inequality for homomorphism counts by Sidorenko (1994). A special case of our inequality says that if $d_v$ denotes the degree of a vertex $v$ in a graph $G$ and $\textrm{Hom}_\Delta(H, G)$ denotes the
Externí odkaz:
http://arxiv.org/abs/2210.11336
Let $X_1,\ldots,X_n$ be independent identically distributed random vectors in $\mathbb{R}^d$. We consider upper bounds on $\max_x \mathbb{P}(a_1X_1+\cdots+a_nX_n=x)$ under various restrictions on $X_i$ and the weights $a_i$. When $\mathbb{P}(X_i=\pm
Externí odkaz:
http://arxiv.org/abs/1912.08770
Autor:
Kurauskas, Valentas, Šiurienė, Ugnė
A road interchange where $n$ roads meet and in which the drivers are not allowed to change lanes can be modelled as an embedding of a 2-coloured (hence bipartite) multigraph $G$ with equal-sized colour classes into an orientable surface such that the
Externí odkaz:
http://arxiv.org/abs/1801.03860
Autor:
Kurauskas, Valentas
Publikováno v:
Discrete Math, 340 (2017), 508-515
For even $n$ we prove that the genus of the complete tripartite graph $K_{n,n,1}$ is $\lceil (n-1) (n-2)/4 \rceil$. This is the least number of bridges needed to build a complete $n$-way road interchange where changing lanes is not allowed. Both the
Externí odkaz:
http://arxiv.org/abs/1612.07888
For a random intersection graph with a power law degree sequence having a finite mean and an infinite variance we show that the global clustering coefficient admits a tunable asymptotic distribution.
Comment: In this refined version of the paper
Comment: In this refined version of the paper
Externí odkaz:
http://arxiv.org/abs/1602.08938
Autor:
Kurauskas, Valentas
Šioje santraukoje trumpai aprašoma V. Kurausko disertacija. Pristatomos abi disertacijos dalys, įvedami atsitiktinių sankirtų grafų ir digrafų modeliai, apibrėžiamos minorinės grafų klasės, suformuluojami sprendžiami uždaviniai bei pate
Externí odkaz:
http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2013~D_20131216_081809-09247/DS.005.0.01.ETD
Autor:
Kurauskas, Valentas
The dissertation consists of two parts. In the first part several asymptotic properties of random intersection graphs are studied. They include birth thresholds for small complete subgraphs in the binomial random intersection graph, the clique number
Externí odkaz:
http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2013~D_20131216_081822-36288/DS.005.1.01.ETD
Publikováno v:
Combinatorica; Feb2025, Vol. 45 Issue 1, p1-36, 36p
Autor:
Kurauskas, Valentas
Let ${\rm ex \,} {\mathcal B}$ be a minor-closed class of graphs with a set ${\mathcal B}$ of minimal excluded minors. We study (a) the asymptotic number of graphs without $k+1$ disjoint minors in ${\mathcal B}$ and (b) the properties of a uniformly
Externí odkaz:
http://arxiv.org/abs/1504.08107