Zobrazeno 1 - 10
of 79
pro vyhledávání: '"KUBALE, Marek"'
In this paper we consider the problem of scheduling on parallel machines with a presence of incompatibilities between jobs. The incompatibility relation can be modeled as a complete multipartite graph in which each edge denotes a pair of jobs that ca
Externí odkaz:
http://arxiv.org/abs/2010.13207
Publikováno v:
In Artificial Intelligence August 2022 309
Autor:
Furmańczyk, Hanna, Kubale, Marek
A graph $G$ is equitably $k$-colorable if its vertices can be partitioned into $k$ independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest integer $k$ for which such a coloring exists is known as
Externí odkaz:
http://arxiv.org/abs/1704.05929
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Furmańczyk, Hanna, Kubale, Marek
A graph is equitably $k$-colorable if its vertices can be partitioned into $k$ independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest $k$ for which such a coloring exists is known as the \emph{e
Externí odkaz:
http://arxiv.org/abs/1409.0650
We study a new problem for cubic graphs: bipartization of a cubic graph $Q$ by deleting sufficiently large independent set $I$. It can be expressed as follows: \emph{Given a connected $n$-vertex tripartite cubic graph $Q=(V,E)$ with independence numb
Externí odkaz:
http://arxiv.org/abs/1406.2728
Autor:
Giaro Krzysztof, Kubale Marek
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 40, Iss 3, Pp 885-891 (2020)
In the note we consider vertex coloring of a graph in which each color has an associated cost which is incurred each time the color is assigned to a vertex. The cost of coloring is the sum of costs incurred at each vertex. We show that the minimum co
Externí odkaz:
https://doaj.org/article/edf442cb4ba74f629e18a6528dee7e05
A graph is equitably $k$-colorable if its vertices can be partitioned into $k$ independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest $k$ for which such a coloring exists is known as the equitab
Externí odkaz:
http://arxiv.org/abs/1210.6568
Autor:
Furmańczyk, Hanna, Kubale, Marek
Publikováno v:
In Discrete Applied Mathematics 10 January 2018 234:210-217
Autor:
FURMAŃCZYK, Hanna, KUBALE, Marek
Publikováno v:
Archives of Control Sciences; 2024, Vol. 34 Issue 1, p211-223, 13p