Zobrazeno 1 - 10
of 767
pro vyhledávání: '"KOZLOV, I. A."'
Autor:
Kozlov, I. K.
We prove that any bi-Hamiltonian system $v = \left(\mathcal{A} + \lambda \mathcal{B}\right)dH_{\lambda}$ on a real smooth manifold that is Hamiltonian with respect all Poisson brackets $\left(\mathcal{A} + \lambda \mathcal{B}\right)$ is locally bi-in
Externí odkaz:
http://arxiv.org/abs/2410.21642
Autor:
Kozlov, I. K.
We prove that any bi-Hamiltonian system $v = \left(\mathcal{A} + \lambda \mathcal{B}\right)dH_{\lambda}$ that is Hamiltonian with respect all Poisson brackets $\mathcal{A} + \lambda \mathcal{B}$ is locally bi-integrable in both the real smooth case,
Externí odkaz:
http://arxiv.org/abs/2410.20574
Autor:
Kozlov, I. K.
In this paper we prove that for a pencil of compatible Poisson brackets $\mathcal{P} = \left\{\mathcal{A} + \lambda\mathcal{B} \right\}$ the local Casimir functions of Poisson brackets $\mathcal{A} + \lambda \mathcal{B}$ and coefficients of the chara
Externí odkaz:
http://arxiv.org/abs/2410.11032
Autor:
Kozyrev, N. V., Baryshnikov, K. A., Namozov, B. R., Kozlov, I. I., Boiko, M. E., Averkiev, N. S., Kusrayev, Yu. G.
The optical orientation of Mn$^{2+}$ spins in the first excited state $^4$T$_1$ was experimentally observed in bulk (Zn, Mn)Se ($x_\mathrm{Mn}=0.01$) in the an external magnetic field of up to $6\,$T in Faraday geometry. This occurred during quasi-re
Externí odkaz:
http://arxiv.org/abs/2410.09581
Autor:
Kozlov, I. K.
This paper explores the structure of bi-Lagrangian Grassmanians for pencils of $2$-forms on real or complex vector spaces. We reduce the analysis to the pencils whose Jordan-Kronecker Canonical Form consists of Jordan blocks with the same eigenvalue.
Externí odkaz:
http://arxiv.org/abs/2409.09855
Autor:
Kozlov, I. K.
We introduce two novel techniques that simplify calculation of Jordan-Kronecker invariants for a Lie algebra $\mathfrak{g}$ and for a Lie algebra representation $\rho$. First, the stratification of matrix pencils under strict equivalence puts restric
Externí odkaz:
http://arxiv.org/abs/2409.09535
Autor:
Kozlov, I. K.
K. S. Vorushilov described Jordan-Kronecker invariants for semi-direct sums $\operatorname{sl} \ltimes \left(\mathbb{C}^n\right)^k$ if $k > n$ or if $n$ is a multiple of $k$. We describe the Jordan-Kronecker invariants in the cases $n \equiv \pm 1 \p
Externí odkaz:
http://arxiv.org/abs/2409.04454
Autor:
Afanasiev, S., Agakishiev, G., Aleksandrov, E., Aleksandrov, I., Alekseev, P., Alishina, K., Astakhov, V., Atkin, E., Aushev, T., Azorskiy, V., Babkin, V., Balashov, N., Barak, R., Baranov, A., Baranov, D., Baranova, N., Barbashina, N., Baznat, M., Bazylev, S., Belov, M., Blau, D., Bocharnikov, V., Bogdanova, G., Bolozdynya, A., Bondar, E., Boos, E., Buryakov, M., Buzin, S., Chebotov, A., Chemezov, D., Chen, J. H., Demanov, A., Dementev, D., Dmitriev, A., Drnoyan, J., Dryablov, D., Dryuk, A., Dubinchik, B., Dulov, P., Egorov, A., Egorov, D., Elsha, V., Fediunin, A., Fedosimova, A., Filippov, I., Filozova, I., Finogeev, D., Gabdrakhmanov, I., Galavanov, A., Gavrischuk, O., Gertsenberger, K., Golosov, O., Golovatyuk, V., Grigoriev, P., Golubeva, M., Guber, F., Ibraimova, S., Idrisov, D., Idrissova, T., Iusupova, A., Ivashkin, A., Izvestnyy, A., Kabadzhov, V., Kanokova, Sh., Kapishin, M., Kapitonov, I., Karjavin, V., Karmanov, D., Karpushkin, N., Kattabekov, R., Kekelidze, V., Khabarov, S., Kharlamov, P., Khudaiberdyev, G., Khukhaeva, A., Khvorostukhin, A., Kiryushin, Yu., Klimai, P., Kolesnikov, V., Kolozhvari, A., Kopylov, Yu., Korolev, M., Kovachev, L., Kovalev, I., Kruglova, I., Kovalev, Yu., Kozlov, I., Kozlov, V., Kuklin, S., Kulish, E., Kurganov, A., Kutergina, V., Kuznetsov, A., Ladygin, E., Lanskoy, D., Lashmanov, N., Lebedev, I., Lenivenko, V., Lednicky, R., Leontiev, V., Liapin, D., Litvinenko, E., Ma, Y. G., Makankin, A., Makhnev, A., Malakhov, A., Mamaev, M., Martemianov, A., Martovitsky, E., Mashitsin, K., Merkin, M., Merts, S., Morozov, S., Murin, Yu., Musaev, K., Musulmanbekov, G., Myasnikov, A., Myktybekov, D., Nagdasev, R., Nemnyugin, S., Nikitin, D., Novozhilov, S., Olimov, Kh., Olimov, K., Palichik, V., Parfenov, P., Pelevanyuk, I., Peresunko, D., Piyadin, S., Platonova, M., Plotnikov, V., Podgainy, D., Pukhaeva, N., Ratnikov, F., Reshetova, S., Rogov, V., Romanov, I., Rufanov, I., Rukoyatkin, P., Rumyantsev, M., Rybakov, T., Sakulin, D., Sedykh, S., Serebryakov, D., Shabanov, A., Segal, I., Semak, A., Sergeev, S., Serikkanov, A., Sheremetev, A., Sheremeteva, A., Shchipunov, A., Shitenkov, M., Shopova, M., Shumikhin, V., Shutov, A., Shutov, V., Shodmonov, M., Slepnev, I., Slepnev, V., Slepov, I., Smirnov, A., Smolyanin, T., Solomin, A., Sorin, A., Sosnovtsev, V., Spaskov, V., Stavinskiy, A., Stekhanov, V., Stepanenko, Yu., Streletskaya, E., Streltsova, O., Strikhanov, M., Sukhov, E., Suvarieva, D., Taer, G., Taranenko, A., Tarasov, N., Tarasov, O., Teremkov, P., Terletsky, A., Teryaev, O., Tcholakov, V., Tikhomirov, V., Timoshenko, A., Tojiboev, O., Topilin, N., Tretyakova, T., Troshin, V., Truttse, A., Tserruya, I., Tskhay, V., Tyapkin, I., Ustinov, V., Vasendina, V., Velichkov, V., Volkov, V., Voronin, A., Voytishin, N., Yuldashev, B., Yurevich, V., Zamiatin, N., Zavertyaev, M., Zhang, S., Zhavoronkova, I., Zhezher, V., Zhigareva, N., Zinchenko, A., Zubankov, A., Zubarev, E., Zuev, M.
BM@N (Baryonic Matter at Nuclotron) is the first experiment operating and taking data at the Nuclotron/NICA ion-accelerating complex.The aim of the BM@N experiment is to study interactions of relativistic heavy-ion beams with fixed targets. We presen
Externí odkaz:
http://arxiv.org/abs/2312.17573
Autor:
Kozlov, I. K.
We study commutative subalgebras in the symmetric algebra $S(\mathfrak{g})$ of a finite-dimensional Lie algebra $\mathfrak{g}$. A. M. Izosimov introduced extended Mischenko-Fomenko subalgebras $\tilde{\mathcal{F}}_a$ and gave a completeness criterion
Externí odkaz:
http://arxiv.org/abs/2307.10418
Autor:
Kozlov, I. K.
We study what Jordan-Kronecker invariants of Lie algebras, introduced by A. V. Bolsinov and P. Zhang, are possible. We completely solve this problem in the Jordan and the Kronecker cases. We prove that any JK invariants that contain the Kronecker $3
Externí odkaz:
http://arxiv.org/abs/2307.08642