Zobrazeno 1 - 10
of 326
pro vyhledávání: '"KOTSCHICK, D."'
We propose a simple definition of a Born geometry in the framework of K\"unneth geometry. While superficially different, this new definition is equivalent to the known definitions in terms of para-quaternionic or generalized geometries. We discuss in
Externí odkaz:
http://arxiv.org/abs/2410.15402
Autor:
Kotschick, D., Placini, G.
Publikováno v:
Annali di Matematica (2024)
We study fundamental groups of compact Sasaki manifolds and show that compared to K\"ahler groups, they exhibit rather different behaviour. This class of groups is not closed under taking direct products, and there is often an upper bound on the dime
Externí odkaz:
http://arxiv.org/abs/2212.06805
Autor:
Hsiao, E., Kotschick, D.
Publikováno v:
Bull. London Math. Soc. 54 (2022), 2314--2323
We prove that any rational linear combination of Pontryagin numbers that does not factor through the universal elliptic genus is unbounded on connected closed spin manifolds of nonnegative sectional curvature.
Comment: 9 pages, final version, to
Comment: 9 pages, final version, to
Externí odkaz:
http://arxiv.org/abs/2111.07862
Autor:
Kotschick, D., Placini, G.
Publikováno v:
Bull. London Math. Soc. 54 (2022), 1962--1977
In all odd dimensions $\geq 5$ we produce examples of manifolds admitting pairs of Sasaki structures with different basic Hodge numbers. In dimension $5$ we prove more precise results, for example we show that on connected sums of copies of $S^2\time
Externí odkaz:
http://arxiv.org/abs/2110.03328
Publikováno v:
In Topology and its Applications 1 March 2024 344
Autor:
Kotschick, D., Thung, D. K.
Publikováno v:
Annali di Matematica Pura ed Applicata 199 (2020), 2227--2241
We discuss the complex geometry of two complex five-dimensional K\"ahler manifolds which are homogeneous under the exceptional Lie group $G_2$. For one of these manifolds rigidity of the complex structure among all K\"ahlerian complex structures was
Externí odkaz:
http://arxiv.org/abs/1910.02557
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kotschick, D., Vogel, T.
Publikováno v:
Comment. Math. Helv. 93 (2018), 475--491
We study pairs of Engel structures on four-manifolds whose intersection has constant rank one and which define the same even contact structure, but induce different orientations on it. We establish a correspondence between such pairs of Engel structu
Externí odkaz:
http://arxiv.org/abs/1610.04001
Autor:
Kotschick, D.
Publikováno v:
In Topology and its Applications 15 August 2021 300
Publikováno v:
Proc. Amer. Math. Soc. 144 (2016), 2705--2710
We show that non-domination results for targets that are not dominated by products are stable under Cartesian products.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/1507.01413