Zobrazeno 1 - 10
of 247
pro vyhledávání: '"KOHLENBACH, ULRICH"'
Autor:
Kohlenbach, Ulrich, Pinto, Pedro
In this paper we introduce a localized and relativized generalization of the usual concept of Fej\'er monotonicity together with uniform and quantitative versions thereof and show that the main quantitative results obtained by the 1st author together
Externí odkaz:
http://arxiv.org/abs/2310.06528
Autor:
Freund, Anton, Kohlenbach, Ulrich
We analyze a proof of Bruck to obtain an explicit rate of asymptotic regularity for Ces\`aro means in uniformly convex Banach spaces. Our rate will only depend on a norm bound and a modulus $\eta$ of uniform convexity. One ingredient for the proof by
Externí odkaz:
http://arxiv.org/abs/2204.04100
We show that the asymptotic regularity and the strong convergence of the modified Halpern iteration due to T.-H. Kim and H.-K. Xu and studied further by A. Cuntavenapit and B. Panyanak and the Tikhonov-Mann iteration introduced by H. Cheval and L. Le
Externí odkaz:
http://arxiv.org/abs/2203.11003
Autor:
Freund, Anton, Kohlenbach, Ulrich
We extract quantitative information (specifically, a rate of metastability in the sense of Terence Tao) from a proof due to Kazuo Kobayasi and Isao Miyadera, which shows strong convergence for Ces\`aro means of nonexpansive maps on Banach spaces.
Externí odkaz:
http://arxiv.org/abs/2108.08555
Autor:
Kohlenbach, Ulrich, Pinto, Pedro
In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscos
Externí odkaz:
http://arxiv.org/abs/2102.03981
Autor:
Pischke, Nicholas, Kohlenbach, Ulrich
Publikováno v:
Numerical Algorithms (2021)
We use techniques originating from the subdiscipline of mathematical logic called `proof mining' to provide rates of metastability and - under a metric regularity assumption - rates of convergence for a subgradient-type algorithm solving the equilibr
Externí odkaz:
http://arxiv.org/abs/2008.06900
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kohlenbach, Ulrich, Powell, Thomas
This paper studies proofs of strong convergence of various iterative algorithms for computing the unique zeros of set-valued accretive operators that also satisfy some weak form of uniform accretivity at zero. More precisely, we extract explicit rate
Externí odkaz:
http://arxiv.org/abs/1908.06734
Autor:
Kohlenbach, Ulrich, Sipos, Andrei
We use techniques of proof mining to extract a uniform rate of metastability (in the sense of Tao) for the strong convergence of approximants to fixed points of uniformly continuous pseudocontractive mappings in Banach spaces which are uniformly conv
Externí odkaz:
http://arxiv.org/abs/1812.04940