Zobrazeno 1 - 10
of 1 371
pro vyhledávání: '"KOEKOEK, R."'
Autor:
Koekoek, J., Koekoek, R.
Publikováno v:
J. Comput. Appl. Math. 126, 2000, 1-31.
We look for spectral type differential equations satisfied by the generalized Jacobi polynomials, which are orthogonal on the interval [-1,1] with respect to a weight function consisting of the classical Jacobi weight function together with two point
Externí odkaz:
http://arxiv.org/abs/math/9908162
Autor:
Koekoek, J., Koekoek, R.
Publikováno v:
Complex Variables 39 (1999) 1-18
We look for spectral type differential equations satisfied by the generalized Jacobi polynomials which are orthogonal on the interval [-1,1] with respect to a weight function consisting of the classical Jacobi weight function together with point mass
Externí odkaz:
http://arxiv.org/abs/math/9908148
Autor:
Koekoek, J., Koekoek, R.
Publikováno v:
Proceedings of the International Workshop on Orthogonal Polynomials in Mathematical Physics (Legan\'es, 1996), Universidad Carlos III Madrid, Legan\'es, 1997, 103-111.
We find all spectral type differential equations satisfied by the symmetric generalized ultraspherical polynomials which are orthogonal on the interval [-1,1] with respect to the classical symmetric weight function for the Jacobi polynomials together
Externí odkaz:
http://arxiv.org/abs/math/9908147
Autor:
Koekoek, J., Koekoek, R.
We look for differential equations satisfied by the generalized Jacobi polynomials which are orthogonal on the interval [-1,1] with respect to a weight function consisting of the classical Jacobi weight function together with point masses at the endp
Externí odkaz:
http://arxiv.org/abs/math/9908146
Publikováno v:
Trans. Amer. Math. Soc. 350 (1998) 347-393
We obtain all spectral type differential equations satisfied by the Sobolev-type Laguerre polynomials. This generalizes the results found in 1990 by the first and second author in the case of the generalized Laguerre polynomials defined by T.H. Koorn
Externí odkaz:
http://arxiv.org/abs/math/9908145
Autor:
Koekoek, J., Koekoek, R.
Publikováno v:
J. Math. Anal. Appl. 176 (1993) 627-634
We prove a formula for the nth power of the q-derivative operator at x=0 for every function whose nth derivative at x=0 exists. We give a proof in both the real variable and the complex variable case.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/math/9908140
Publikováno v:
Transactions of the American Mathematical Society, 1998 Jan 01. 350(1), 347-393.
Externí odkaz:
https://www.jstor.org/stable/117674
Autor:
Koekoek, J., Koekoek, R.
Publikováno v:
Proceedings of the American Mathematical Society, 1991 Aug 01. 112(4), 1045-1054.
Externí odkaz:
https://www.jstor.org/stable/2048653
Publikováno v:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1970 Feb 01. 257(813), 231-236.
Externí odkaz:
https://www.jstor.org/stable/2416936
Autor:
Makarov, V. L.1 (AUTHOR) vasylyk@gmail.com
Publikováno v:
Ukrainian Mathematical Journal. Nov2021, Vol. 73 Issue 6, p963-976. 14p.