Zobrazeno 1 - 10
of 134
pro vyhledávání: '"KOÇ, Suat"'
Autor:
Yiğit, Uğur, Koç, Suat
Let $R\ $be an integral domain and $R^{\#}$ the set of all nonzero nonunits of $R.\ $For every elements $a,b\in R^{\#},$ we define $a\sim b$ if and only if $aR=bR,$ that is, $a$ and $b$ are associated elements. Suppose that $EC(R^{\#})$ is the set of
Externí odkaz:
http://arxiv.org/abs/2409.10577
In this paper, we associate a new topology to a nonzero unital module $M$ over a commutative $R$, which is called Golomb topology of the $R$-module $M$. Let $M\ $be an\ $R$-module and $B_{M}$ be the family of coprime cosets $\{m+N\}$ where $m\in M$ a
Externí odkaz:
http://arxiv.org/abs/2409.09807
In this article, we introduce the notion of regular fusible modules. Let $R$ be a ring with an identity and $M$ an $R$-module. An element $0\neq m\in M$ is said to be regular fusible if there exists $r\in R$, a non zero-divisor of $M$, such that $mr$
Externí odkaz:
http://arxiv.org/abs/2403.13939
In this study, we aim to introduce the concept of classical 1-absorbing prime submodules of a nonzero unital module $M$ over a commutative ring $A$ with unity. A proper submodule $P$ of $M$ is said to be a classical 1-absorbing prime submodule, if fo
Externí odkaz:
http://arxiv.org/abs/2405.05971
In this paper, we study weakly classical 1-absorbing prime submodules of a nonzero unital module $M$ over a commutative ring $R$ having a nonzero identity. A proper submodule $N$ of $M$ is said to be a weakly classical 1-absorbing prime submodule, if
Externí odkaz:
http://arxiv.org/abs/2403.19659
Let $G$ be a group, $R$ be a $G$-graded commutative ring with nonzero unity and $GI(R)$ be the set of all graded ideals of $R$. Suppose that $\phi:GI(R)\rightarrow GI(R)\cup\{\emptyset\}$ is a function. In this article, we introduce and study the con
Externí odkaz:
http://arxiv.org/abs/2107.04659
Let $R$ be a commutative ring with nonzero identity. Let $\mathcal{I}(R)$ be the set of all ideals of $R$ and let $\delta : \mathcal{I}(R)\longrightarrow \mathcal{I}(R)$ be a function. Then $\delta$ is called an expansion function of ideals of $R$ if
Externí odkaz:
http://arxiv.org/abs/2102.07189
In this paper, we introduce $\phi$-1-absorbing prime ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity $1\neq0$ and $\phi:\mathcal{I}(R)\rightarrow\mathcal{I}(R)\cup\{\emptyset\}$ be a function where $\mathcal{I}(R)$
Externí odkaz:
http://arxiv.org/abs/2005.12983
This paper introduce and study weakly 1-absorbing prime ideals in commutative rings. Let $A$ be a commutative ring with a nonzero identity $1\neq 0$. A proper ideal $P$ of $A$ is said to be a weakly 1-absorbing prime ideal if for each nonunits $x, y,
Externí odkaz:
http://arxiv.org/abs/2005.10365
In this article, we introduce and study the concept of $\phi$-2-absorbing quasi primary ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity and $L(R)$ be the lattice of all ideals of $R$. Suppose that $\phi:L(R)\rightar
Externí odkaz:
http://arxiv.org/abs/2005.08709