Zobrazeno 1 - 10
of 210
pro vyhledávání: '"KHANIN, K."'
Let $f$ and $\tilde{f}$ be two circle diffeomorphisms with a break point, with the same irrational rotation number of bounded type, the same size of the break $c$ and satisfying a certain Zygmund type smoothness condition depending on a parameter $\g
Externí odkaz:
http://arxiv.org/abs/2107.12905
Publikováno v:
Comm Math Phys 270 (2007) 197-231
The disadvantage of `traditional' multidimensional continued fraction algorithms is that it is not known whether they provide simultaneous rational approximations for generic vectors. Following ideas of Dani, Lagarias and Kleinbock-Margulis we descri
Externí odkaz:
http://arxiv.org/abs/math-ph/0509007
Publikováno v:
J. Stat. Phys. vol.121 Nos.5/6 pp.671--695 (2005)
It is shown that fractional derivatives of the (integrated) invariant measure of the Feigenbaum map at the onset of chaos have power-law tails in their cumulative distributions, whose exponents can be related to the spectrum of singularities $f(\alph
Externí odkaz:
http://arxiv.org/abs/nlin/0309068
Autor:
Bec, J., Khanin, K.
Publikováno v:
J. Stat. Phys. 113, 741–759 (2003)
The inviscid Burgers equation with random and spatially smooth forcing is considered in the limit when the size of the system tends to infinity. For the one-dimensional problem, it is shown both theoretically and numerically that many of the features
Externí odkaz:
http://arxiv.org/abs/nlin/0210001
Publikováno v:
Phys. Rev. Lett. 89, 024501 (2002)
The dynamics of the multi-dimensional randomly forced Burgers equation is studied in the limit of vanishing viscosity. It is shown both theoretically and numerically that the shocks have a universal global structure which is determined by the topolog
Externí odkaz:
http://arxiv.org/abs/nlin/0112050
Publikováno v:
Advances in Turbulence VIII, C. Dopazo et al., eds., CIMNE, Barcelona, 2000
Extending work of E, Khanin, Mazel and Sinai (1997 PRL 78:1904-1907) on the one-dimensional Burgers equation, we show that density pdf's have universal power-law tails with exponent -7/2. This behavior stems from singularities, other than shocks, who
Externí odkaz:
http://arxiv.org/abs/astro-ph/0101298
Publikováno v:
Ann. of Math. (2) 151 (2000), no. 3, 877-960
In this paper we study the following Burgers equation du/dt + d/dx (u^2/2) = epsilon d^2u/dx^2 + f(x,t) where f(x,t)=dF/dx(x,t) is a random forcing function, which is periodic in x and white noise in t. We prove the existence and uniqueness of an inv
Externí odkaz:
http://arxiv.org/abs/math/0005306
Publikováno v:
J. Fluid Mech. 416, 239-267, 2000
Burgers turbulence subject to a force $f(x,t)=\sum_jf_j(x)\delta(t-t_j)$, where the $t_j$'s are ``kicking times'' and the ``impulses'' $f_j(x)$ have arbitrary space dependence, combines features of the purely decaying and the continuously forced case
Externí odkaz:
http://arxiv.org/abs/chao-dyn/9910001
Autor:
Khanin, K., Mazel, A.
Publikováno v:
Annals of Mathematics, 2000 May 01. 151(3), 877-960.
Externí odkaz:
https://www.jstor.org/stable/121126
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.