Zobrazeno 1 - 10
of 60
pro vyhledávání: '"KARL SCHWEDE"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 7 (2019)
We study $F$-signature under proper birational morphisms $\unicode[STIX]{x1D70B}:Y\rightarrow X$, showing that $F$-signature strictly increases for small morphisms or if $K_{Y}\leqslant \unicode[STIX]{x1D70B}^{\ast }K_{X}$. In certain cases, we can e
Externí odkaz:
https://doaj.org/article/25600c40db244997ab8e1047b58a5f6c
Autor:
Bhargav Bhatt, Linquan Ma, Zsolt Patakfalvi, Karl Schwede, Kevin Tucker, Joe Waldron, Jakub Witaszek
Publikováno v:
Publications mathématiques de l'IHÉS.
We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global $F$ F -regularity to mixed characteristic and identify certain stable sections of
Publikováno v:
Journal of Algebraic Geometry. 31:497-559
We use the framework of perfectoid big Cohen-Macaulay (BCM) algebras to define a class of singularities for pairs in mixed characteristic, which we call purely BCM-regular singularities, and a corresponding adjoint ideal. We prove that these satisfy
Publikováno v:
manuscripta mathematica. 170:471-496
The containment problem for symbolic and ordinary powers of ideals asks for what values of $a$ and $b$ we have $I^{(a)} \subseteq I^b$. Over a regular ring, a result by Ein-Lazarsfeld-Smith, Hochster-Huneke, and Ma-Schwede partially answers this ques
Autor:
Karl Schwede, Bernard Serbinowski
Publikováno v:
Journal of Software for Algebra and Geometry. 10:1-7
This note describes a package for computing seminormalization of rings within Macaulay2.
Comment: 6 pages, comments welcome, the latest version of the package is available in https://github.com/kschwede/M2/blob/master/M2/Macaulay2/packages/Semin
Comment: 6 pages, comments welcome, the latest version of the package is available in https://github.com/kschwede/M2/blob/master/M2/Macaulay2/packages/Semin
Autor:
Karl Schwede, Linquan Ma
Publikováno v:
Duke Mathematical Journal. 170
We utilize recent results of Andre and Gabber on the existence of weakly functorial, integral perfectoid big Cohen–Macaulay (BCM) algebras to study singularities of local rings in mixed characteristic. In particular, we introduce a mixed characteri
Publikováno v:
Commutative Algebra ISBN: 9783030896935
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9730ea0c0eddad74c4160a6af287d0c6
https://doi.org/10.1007/978-3-030-89694-2_15
https://doi.org/10.1007/978-3-030-89694-2_15
Publikováno v:
Journal of Singularities. 23
We further the classification of rational surface singularities. Suppose $(S, \mathfrak{n}, \mathcal{k})$ is a strictly Henselian regular local ring of mixed characteristic $(0, p > 5)$. We classify functions $f$ for which $S/(f)$ has an isolated rat
Autor:
Thomas Polstra, Karl Schwede
Suppose $R$ is a $\mathbb{Q}$-Gorenstein $F$-finite and $F$-pure ring of prime characteristic $p>0$. We show that if $I\subseteq R$ is a compatible ideal (with all $p^{-e}$-linear maps) then there exists a module finite extension $R\to S$ such that t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0a82c930e57241a1a1c859bf5f5f4339
Publikováno v:
International Mathematics Research Notices. 2019:4325-4339
We prove that a strongly $F$-regular scheme $X$ admits a finite, generically Galois, and étale-in-codimension-one cover $\tilde X \to X$ such that the étale fundamental groups of $\tilde X$ and $\tilde X_{{\mathrm{reg}}}$ agree. Equivalently, every