Zobrazeno 1 - 10
of 141
pro vyhledávání: '"KALETA, KAMIL"'
Autor:
Kaleta, Kamil, Schilling, René L.
We study the quasi-ergodicity of compact strong Feller semigroups $U_t$, $t > 0$, on $L^2(M,\mu)$; we assume that $M$ is a locally compact Polish space equipped with a locally finite Borel measue $\mu$. The operators $U_t$ are ultracontractive and po
Externí odkaz:
http://arxiv.org/abs/2304.12834
We prove the existence and establish the Lifschitz singularity of the integrated density of states for certain random Hamiltonians $H^\omega=H_0+V^\omega$ on fractal spaces of infinite diameter. The kinetic term $H_0$ is given by $\phi(-\mathcal L),$
Externí odkaz:
http://arxiv.org/abs/2303.05980
Autor:
Baraniewicz, Miłosz, Kaleta, Kamil
We give the upper and the lower estimates of heat kernels for Schr\"odinger operators $H=-\Delta+V$, with nonnegative and locally bounded potentials $V$ in $\mathbb{R}^d$, $d \geq 1$. We observe a factorization: the contribution of the potential is d
Externí odkaz:
http://arxiv.org/abs/2302.13886
We give local in time sharp two sided estimates of the heat kernel associated with the relativistic stable operator perturbed by a critical (Hardy) potential.
Externí odkaz:
http://arxiv.org/abs/2208.00687
We consider non-local Schr\"odinger operators $H=-L-V$ in $L^2(\mathbf{R}^d)$, $d \geq 1$, where the kinetic terms $L$ are pseudo-differential operators which are perturbations of the fractional Laplacian by bounded non-local operators and $V$ is the
Externí odkaz:
http://arxiv.org/abs/2208.00683
Autor:
Baraniewicz, Miłosz, Kaleta, Kamil
We prove estimates at infinity of convolutions $f^{n\star}$ and densities of the corresponding compound Poisson measures for a class of radial decreasing densities on $\mathbb{R}^d$, $d \geq 1$, which are not convolution equivalent. Existing methods
Externí odkaz:
http://arxiv.org/abs/2206.02258
We study heat kernels of Schr\"odinger operators whose kinetic terms are non-local operators built for sufficiently regular symmetric L\'evy measures with radial decreasing profiles and potentials belong to Kato class. Our setting is fairly general a
Externí odkaz:
http://arxiv.org/abs/2204.04239
Autor:
Kaleta, Kamil, Ponikowski, Daniel
We propose a definition of directional multivariate subexponential and convolution equivalent densities and find a useful characterization of these notions for a class of integrable and almost radial decreasing functions. We apply this result to show
Externí odkaz:
http://arxiv.org/abs/2109.06336
We propose and study a certain discrete time counterpart of the classical Feynman--Kac semigroup with a confining potential in countable infinite spaces. For a class of long range Markov chains which satisfy the direct step property we prove sharp es
Externí odkaz:
http://arxiv.org/abs/2109.03788
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.