Zobrazeno 1 - 10
of 7 205
pro vyhledávání: '"KALEDIN IS"'
Autor:
Emprin, Coline
We develop a general obstruction theory to the formality of algebraic structures over any commutative ground ring. It relies on the construction of Kaledin obstruction classes that faithfully detect the formality of differential graded algebras over
Externí odkaz:
http://arxiv.org/abs/2404.17529
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Abasheva, Anna
Publikováno v:
Int. Math. Res. Not., 2021, rnab047
In this paper we study the geometry of the total space $Y$ of a cotangent bundle to a K\"ahler manifold $N$ where $N$ is obtained as a K\"ahler reduction from $\mathbb C^n$. Using the hyperk\"ahler reduction we construct a hyperk\"ahler metric on $Y$
Externí odkaz:
http://arxiv.org/abs/2007.05773
We prove that after inverting the Planck constant $h$ the Bezrukavnikov-Kaledin quantization $(X, \mathcal{O}_h)$ of symplectic variety $X$ in characteristic $p$ is Morita equivalent to a certain central reduction of the algebra of differential opera
Externí odkaz:
http://arxiv.org/abs/2011.08259
Autor:
Barwick, Clark, Glasman, Saul
With an explicit, algebraic indexing $(2,1)$-category, we develop an efficient homotopy theory of cyclonic objects: circle-equivariant objects relative to the family of finite subgroups. We construct an $\infty$-category of cyclotomic spectra as the
Externí odkaz:
http://arxiv.org/abs/1602.02163
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Trans. Amer. Math. Soc. 372 (2019), 4729-4760
Starting from a complex manifold S with a real-analytic c-projective structure whose curvature has type (1,1), and a complex line bundle L with a connection whose curvature has type (1,1), we construct the twistor space Z of a quaternionic manifold M
Externí odkaz:
http://arxiv.org/abs/1512.07625
Autor:
Kaledin, D.
This is a companion overview paper to arXiv:2409.17489: we give all the main definitions, constructions and statements, but no proofs.
Comment: 82 pages, LaTeX2e
Comment: 82 pages, LaTeX2e
Externí odkaz:
http://arxiv.org/abs/2409.18378
Autor:
Kaledin, D.
No new results. This is a short overview of the standard machinery of filtered colimits and accessible categories, written in parallel to a homotopically enhanced version available as Section 7.6 in arXiv:2409.17489.
Comment: 34 pages, LaTeX2e
Comment: 34 pages, LaTeX2e
Externí odkaz:
http://arxiv.org/abs/2409.18380
Autor:
Kaledin, D.
We develop foundations for abstract homotopy theory based on Grothendieck's idea of a "derivator". The theory is model-independent, and does not depend on model categories, nor on simplicial sets. It is designed to accomodate all the usual potential
Externí odkaz:
http://arxiv.org/abs/2409.17489