Zobrazeno 1 - 10
of 47
pro vyhledávání: '"K. W. Gruenberg"'
The wreath product W = A ≀ T, where A ≠ 1, is of type F P2 if and only if T is finite and A is of type F P2.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4bc82f342efd2eaecaf7e933d8ece1fa
https://ora.ox.ac.uk/objects/uuid:4cfa766c-62f9-4cec-b973-3770188c957e
https://ora.ox.ac.uk/objects/uuid:4cfa766c-62f9-4cec-b973-3770188c957e
Autor:
K. W. Gruenberg, A. J. Weir
This is essentially a book on linear algebra. But the approach is somewhat unusual in that we emphasise throughout the geometric aspect of the subject. The material is suitable for a course on linear algebra for mathe matics majors at North America
Autor:
K. W. Gruenberg, Alfred Weiss
Publikováno v:
Proceedings of the London Mathematical Society. 87:273-290
Let $K/k$ be a finite unramified Galois extension of number fields with Galois group $G$. This determines two homomorphisms from the ideal class group $\mathrm{Cl}_k$ of $k$: the capitulation map $\mathrm{Cl}_k \to \mathrm{Cl}_K$ and the Artin map $\
Autor:
K. W. Gruenberg
Publikováno v:
Algebras and Representation Theory. 4:105-108
Given a finite group G and a G-free resolution F* of Z, then dG(Im(Fm+1→Fm))−∑(−1)m−idG(Fi) is almost always an invariant of G.
Autor:
Alfred Weiss, K. W. Gruenberg
Publikováno v:
Journal de Théorie des Nombres de Bordeaux. 12:219-226
On sait que pour une extension galoisienne finie K/k d'un corps de nombres, le noyau du morphisme d'extension Cl k → Cl K s'identifie au noyau X(H) du transfert H/H' → A, ou H = Gal(K/k), A = Gal(K/K) et K est le corps de classes de Hilbert de K.
Autor:
Alfred Weiss, K. W. Gruenberg
Publikováno v:
The Quarterly Journal of Mathematics. 47:25-39
Autor:
K. W. Gruenberg, Alfred Weiss
Publikováno v:
Proceedings of the London Mathematical Society. :264-284
Autor:
K. W. Gruenberg
Publikováno v:
Commentarii Mathematici Helvetici. 68:579-598
Autor:
K. W. Gruenberg
Publikováno v:
Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics. 49:364-385
For a ZG-lattice A, the nth partial free Euler characteristic εn(A) is defined as the infimum of all where F* varies over all free resolutions of A. It is shown that there exists a stably free resolution E* of A which realises εn(A) for all n≥0 a
Autor:
K. W. Gruenberg
Publikováno v:
Illinois J. Math. 47, no. 1-2 (2003), 1-30