Zobrazeno 1 - 10
of 102
pro vyhledávání: '"K. R. Vasuki"'
Autor:
K. R., Vasuki1 vasukUkr@hotmail.com, A., Darshan2 darshmath@gmail.com
Publikováno v:
Journal of Ramanujan Society of Mathematics & Mathematical Sciences. 2022, Vol. 9 Issue 2, p1-10. 10p.
Autor:
K. R. Vasuki, G. Vinay
Publikováno v:
The Journal of Analysis. 30:1485-1495
Autor:
K. Pushpa, K. R. Vasuki
Publikováno v:
Arabian Journal of Mathematics. 11:355-378
Ramanujan recorded Eisenstein series identities of level 5 of weight 2. The objective of this article is to prove these identities by classical method and also we find some new Eisenstein series identities for level 7. Finally we make use of these re
Autor:
K. Pushpa, K. R. Vasuki
Publikováno v:
Indian Journal of Pure and Applied Mathematics. 53:1110-1121
Autor:
K. R. Vasuki, A. I. Vijaya Shankar
Publikováno v:
Indian Journal of Pure and Applied Mathematics.
Autor:
K. R. Vasuki, M. V. Yathirajsharma
Publikováno v:
The Ramanujan Journal.
Autor:
K. R. Vasuki, K. Pushpa
Publikováno v:
Glasgow Mathematical Journal. 64:434-453
The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to
Publikováno v:
The Ramanujan Journal. 57:931-948
The mathematics literature contains many generalized trigonometric sums which are evaluated through contour integration methods, algebraic methods or through discrete Fourier analysis methods. The purpose of this paper is to show how Ramanujan’s th
Autor:
K. R. Vasuki, M. V. Yathirajsharma
Publikováno v:
The Ramanujan Journal. 56:743-752
On page 237–238 of his second notebook, Ramanujan recorded five modular equations of composite degree 25. Berndt proved all these using the method of parametrization. He also expressed that his proofs undoubtedly often stray from the path followed
Autor:
K. R. Vasuki, Mahadevaswamy
Publikováno v:
The Ramanujan Journal. 51:553-561
In this paper, we prove six Ramanujan’s modular equations of septic degree by employing Ramanujan’s $$_1\psi _1$$ summation formula and certain theta function identities.