Zobrazeno 1 - 10
of 89
pro vyhledávání: '"K. Potvin"'
Publikováno v:
Meteorology, Vol 3, Iss 2, Pp 212-231 (2024)
Probabilistic prediction models exist to reduce surprise about future events. This paper explores the evaluation of such forecasts when the event of interest is rare. We review how the family of Brier-type scores may be ill-suited to evaluate predict
Externí odkaz:
https://doaj.org/article/1363e1d61d7443f58bb40a7a33902027
Autor:
Amy McGovern, Randy J. Chase, Montgomery Flora, David J. Gagne, Ryan Lagerquist, Corey K. Potvin, Nathan Snook, Eric Loken
Publikováno v:
Artificial Intelligence for the Earth Systems. :1-61
We present an overviewof recentwork on using artificial intelligence/machine learning techniques for forecasting convective weather and its associated hazards, including tornadoes, hail, wind, and lightning. These high-impact phenomena globally cause
Publikováno v:
AIMS Mathematics, Vol 3, Iss 3, Pp 365-390 (2018)
Self-similarity in tornadic and some non-tornadic supercell flows is studied and power lawsrelating various quantities in such flows are demonstrated. Magnitudes of the exponents in these powerlaws are related to the intensity of the corresponding fl
Externí odkaz:
https://doaj.org/article/79cf6cd8d9884847ab584dab69c32d2c
Autor:
Joshua G. Gebauer, Alan Shapiro, Corey K. Potvin, Nathan A. Dahl, Michael I. Biggerstaff, A. Addison Alford
Publikováno v:
Journal of Atmospheric and Oceanic Technology. 39:1591-1610
Accurate vertical velocity retrieval from dual-Doppler analysis (DDA) is a long-standing problem of radar meteorology. Typical radar scanning strategies poorly observe the vertical component of motion, leading to large uncertainty in vertical velocit
Autor:
Adam J. Clark, Israel L. Jirak, Burkely T. Gallo, Brett Roberts, Kent H. Knopfmeier, Jake Vancil, David Jahn, Makenzie Krocak, Christopher D. Karstens, Eric D. Loken, Nathan A. Dahl, David Harrison, David Imy, Andrew R. Wade, Jeffrey M. Milne, Kimberly A. Hoogewind, Montgomery Flora, Joshua Martin, Brian C. Matilla, Joseph C. Picca, Corey K. Potvin, Patrick S. Skinner, Patrick Burke
Publikováno v:
Bulletin of the American Meteorological Society. 104:E456-E458
Publikováno v:
Atmospheric Measurement Techniques, Vol 10, Pp 2785-2806 (2017)
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measureme
Externí odkaz:
https://doaj.org/article/b2e00f9911334a53bb111283415aba30
Autor:
Derek R. Stratman, Corey K. Potvin
Publikováno v:
Monthly Weather Review. 150:2033-2054
Storm displacement errors can arise from a number of potential sources of error within a data assimilation (DA) and forecast system. Conversely, storm displacement errors can cause issues for storm-scale, ensemble-based systems using an ensemble Kalm
Publikováno v:
Journal of Applied Meteorology and Climatology. 61:909-930
Many tornadoes are unreported because of lack of observers or are underrated in intensity, width, or track length because of lack of damage indicators. These reporting biases substantially degrade estimates of tornado frequency and thereby undermine
Autor:
Corey K. Potvin, Burkely T. Gallo, Anthony E. Reinhart, Brett Roberts, Patrick S. Skinner, Ryan A. Sobash, Katie A. Wilson, Kelsey C. Britt, Chris Broyles, Montgomery L. Flora, William J. S. Miller, Clarice N. Satrio
Publikováno v:
Journal of Atmospheric and Oceanic Technology. 39:999-1013
Thunderstorm mode strongly impacts the likelihood and predictability of tornadoes and other hazards, and thus is of great interest to severe weather forecasters and researchers. It is often impossible for a forecaster to manually classify all the sto
Autor:
William J. S. Miller, Corey K. Potvin, Montgomery L. Flora, Burkely T. Gallo, Louis J. Wicker, Thomas A. Jones, Patrick S. Skinner, Brian C. Matilla, Kent H. Knopfmeier
Publikováno v:
Weather and Forecasting. 37:181-203
The National Severe Storms Laboratory (NSSL) Warn-on-Forecast System (WoFS) is an experimental real-time rapidly updating convection-allowing ensemble that provides probabilistic short-term thunderstorm forecasts. This study evaluates the impacts of