Zobrazeno 1 - 10
of 223
pro vyhledávání: '"K. Pogány"'
Autor:
Rakesh K. Parmar, Tibor K. Pogány
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-11 (2024)
Abstract We introduce a new unified extension of the integral form of Euler’s beta function with a MacDonald function in the integrand and establish functional upper bounds for it. We use this definition to extend as well the Gaussian and Kummer’
Externí odkaz:
https://doaj.org/article/f3900b9b8dda47da8981af6f978f1bf0
Publikováno v:
Mathematics, Vol 12, Iss 17, p 2709 (2024)
In this article, we consider a unified generalized version of extended Euler’s Beta function’s integral form a involving Macdonald function in the kernel. Moreover, we establish functional upper and lower bounds for this extended Beta function. H
Externí odkaz:
https://doaj.org/article/ac37f09f91d8475a921b3b4d1138c6c1
Publikováno v:
Axioms, Vol 13, Iss 8, p 534 (2024)
The principal aim of this paper is to introduce the extended Voigt-type function Vμ,ν(x,y) and its counterpart extension Wμ,ν(x,y), involving the Neumann function Yν in the kernel of the representing integral. The newly defined integral reduces
Externí odkaz:
https://doaj.org/article/26f35c2384184c1ca8859bf52e9ee6f1
Publikováno v:
Mathematics, Vol 11, Iss 7, p 1710 (2023)
Integral form expressions are obtained for the Mathieu-type series and for their associated alternating versions, the terms of which contain a (p,ν)-extended Gauss hypergeometric function. Contiguous recurrence relations are found for the Mathieu-ty
Externí odkaz:
https://doaj.org/article/5f59c6d9515d40ae8b9dee52b2a3a8a3
Autor:
Tibor K. Pogány
Publikováno v:
Axioms, Vol 11, Iss 11, p 643 (2022)
The author’s research devoted to the Hilbert’s double series theorem and its various further extensions are the focus of a recent survey article. The sharp version of double series inequality result is extended in the case of a not exhaustively i
Externí odkaz:
https://doaj.org/article/9dbf13f13b444e278548369f7258dbfe
Autor:
Tibor K. Pogány
Publikováno v:
Mathematics, Vol 10, Iss 17, p 3106 (2022)
We establish several new functional bounds and uniform bounds (with respect to the variable) for the lower incomplete generalized Fox–Wright functions by means of the representation formulae for the McKay Iν Bessel probability distribution’s cum
Externí odkaz:
https://doaj.org/article/2dca63d28ccd427a91f3d2144e0ef02d
Autor:
Árpád Baricz, Tibor K. Pogány
Publikováno v:
Constructive Approximation.
The generalized Kaiser–Bessel window function is defined via the modified Bessel function of the first kind and arises frequently in tomographic image reconstruction. In this paper, we study in details the properties of the Kaiser–Bessel distribu
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematics, Vol 9, Iss 2, p 129 (2021)
The cumulative distribution function of the non-central chi-square distribution χn′2(λ) of n degrees of freedom possesses an integral representation. Here we rewrite this integral in terms of a lower incomplete gamma function applying two of the
Externí odkaz:
https://doaj.org/article/0bff98fafc3d4faca7ff1c56bf11a375
Publikováno v:
Mathematics; Volume 11; Issue 7; Pages: 1710
Integral form expressions are obtained for the Mathieu-type series and for their associated alternating versions, the terms of which contain a (p,ν)-extended Gauss hypergeometric function. Contiguous recurrence relations are found for the Mathieu-ty
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::12f7bda84e1846e01dc569f7e0bfaabc
https://doi.org/10.3390/math11071710
https://doi.org/10.3390/math11071710