Zobrazeno 1 - 10
of 24
pro vyhledávání: '"K. I. Oskolkov"'
Autor:
K. I. Oskolkov, M. A. Chakhkiev
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 280:248-262
For the function \(H:\mathbb{R}^2 \mapsto \mathbb{C}\), \(H: = (p.v.)\sum\nolimits_{n \in \mathbb{Z}\backslash \{ 0\} } {\tfrac{{\exp \left\{ {\pi i\left( {tn^2 + 2xn} \right)} \right\}}} {{2\pi in}}}\) of two real variables (t, x) ∈ ℝ2, we study
Autor:
K. I. Oskolkov, M. A. Chakhkiev
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 269:186-196
The function \( \psi : = \sum\nolimits_{n \in \mathbb{Z}\backslash \left\{ 0 \right\}} {{{e^{\pi i\left( {tn^2 + 2xn} \right)} } \mathord{\left/ {\vphantom {{e^{\pi i\left( {tn^2 + 2xn} \right)} } {\left( {\pi in^2 } \right)}}} \right. \kern-\nulldel
Autor:
K. I. Oskolkov
Publikováno v:
Journal of Mathematical Sciences. 155:129-152
In this paper, we compare the effectiveness of free (nonlinear) relief approximation, equidistant relief approximation, and polynomial approximation {ie129-01}, and {ie129-02} of an individual function ƒ(x) in the metric {ie129-03}, where {ie129-04}
Autor:
K. I. Oskolkov
Publikováno v:
Mathematical Notes. 74:232-244
In this paper, we prove a multiple analog of the theorem proved by Arkhipov and the author in 1987, which provides an estimate for the discrete Hilbert transform with polynomial phase. For the linear case, the corresponding estimates of the sum of mu
Autor:
K. I. Oskolkov
Publikováno v:
The Journal of Fourier Analysis and Applications. 4:341-356
Let $$h(t,x): = p.v. \sum\limits_{n \in Z\backslash \left| 0 \right|} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} = \mathop {\lim }\limits_{N \to \infty } \sum\limits_{0< \left| n \right| \leqslant N} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} $$
Autor:
D. Offin, K. I. Oskolkov
Publikováno v:
Constructive Approximation. 9:319-325
A simple and explicit construction of an orthnormal trigonometric polynomial basis in the spaceC of continuous periodic functions is presented. It consists simply of periodizing a well-known wavelet on the real line which is orthonormal and has compa
Autor:
K. I. Oskolkov
Publikováno v:
Canadian Journal of Mathematics. 43:182-212
The following special function of two real variables x2 and x1 is considered: and its connections with the incomplete Gaussian sums where ω are intervals of length |ω| ≤1. In particular, it is proved that for each fixed x2 and uniformly in X2 the
Autor:
K. I. Oskolkov
Publikováno v:
Approximation and Probability.
We study the fractal properties of the time-dependent probability density function for the free quantum particle in a box, i.e. the squared magnitude of the solution of the Cauchy initial value problem for the Schrodinger equation with zero potential
Gridge approximation compiles greedy algorithms and ridge approximation. It is a class of algorithmic constructions of ridge functions - finite linear combinations of planar waves. The goal is to approximate a given target which is a multivariate fun
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a04d650a5b031381a050aea7c2084a4e
https://doi.org/10.21236/ada638384
https://doi.org/10.21236/ada638384
Autor:
H. P. Barendregt, I. V. Dolgachev, G. Rozenberg, A. Salomaa, A. P. Soldatov, A. F. Leont’ev, V. F. Emel’yanov, I. P. Egorov, N. Kh. Rozov, V. V. Rumyantsev, I. B. Vapnyarskiĭ, L. D. Kudryavtsev, M. K. Samarin, I. V. Proskuryakov, V. M. Millionshchikov, N. N. Vil’yams, S. A. Stepanov, S. M. Voronin, I. V. Volovich, D. V. Anosov, D. D. Sokolov, P. K. Suetin, Yu. A. Brychkov, A. P. Prudnikov, A. B. Ivanov, M. I. Voĭtsekhovskiĭ, V. I. Bityutskov, V. A. Chuyanov, G. V. Kuz’mina, H. Maassen, E. D. Solomentsev, E. V. Shikin, A. V. Prokhorov, E. G. D’yakonov, M. V. Fedoryuk, M. A. Shubin, V. T. Bazylev, N. S. Zhavrid, V. V. Okhrimenko, Yu. M. Davydov, B. M. Bredikhin, V. V. Parail, V. I. Danilov, V. M. Mikheev, L. A. Skornyakov, N. G. Ushakov, V. M. Kopytov, T. S. Fofanova, V. A. Zorich, V. L. Popov, Yu. V. Prohorov, V. E. Plisko, V. V. Petrov, V. I. Nechaev, A. A. Bukhshtab, M. S. Nikulin, L. N. Bol’shev, K. I. Oskolkov, B. I. Golubov, V. V. Sazonov, P. S. Aleksandrov, B. S. Kashin, I. A. Vinogradova, B. A. Pasynkov, I. I. Volkov, T. P. Lukashenko, P. M. Gruber, Yu. B. Rudyak, V. A. Iskovskikh, Yu. V. Nesterenko, V. M. Tikhomirov, I. P. Mityuk, A. V. Chernavskiĭ, D. A. Ponomarev, E. G. Goluzina, Ü. Lumiste, A. I. Shtern, A. L. Onishchik, B. A. Rogozin, I. V. Ostrovskiĭ, V. M. Zolotarev, H. C. Myung, Yu. A. Bakhturin, E. B. Vinberg, A. A. Kirillov, V. V. Gorbatsevich, D. V. Alekseevskiĭ, V. P. Platonov, A. I. Kostrikin, A. S. Fedenko, B. R. Vaĭnberg, L. A. Cherkas, Yu. V. Prokhorov, A. I. Galochkin, A. S. Parkhomenko, V. V. Voevodin, A. F. Shapkin, S. G. Kreĭn, V. P. Palamodov, S. A. Aĭvazyan, A. Ya. Khelemskiĭ, A. M. Nakhushev, O. A. Ivanova, S. N. Chernikov, N. N. Ladis, V. G. Karmanov, V. A. Yakubovich, V. I. Arnautov, Yu. A. Rozanov, A. V. Malyshev, I. A. Kvasnikov, A. F. Lavrik, S. V. Kotov, I. Kh. Sabitov, A. V. Efimov, A. P. Ershov, M. Sh. Farber, B. L. Laptev, Kh. D. Ikramov, L. A. Sidorov, I. P. Mysovskikh, N. P. Koreneĭchuk, V. P. Motornyĭ, A. A. Mal’tsev, E. G. Sklyarenko, L. V. Kuz’min, P. T. Johnstone, A. A. Dezin, M. Sh. Tsalenko, A. I. Untern, V. N. Latyshev, A. V. Arkhangel’skiĭ, A. L. Shmel’kin, L. N. Shevrin, S. A. Bogatyĭ, S. Yu. Maslov, G. E. Mints, A. I. Orlov, V. D. Belousov, A. F. Kharshiladze, V. Ya. Gutlyanskiĭ, E. M. Semenov, A. A. Konyushkov, B. A. Efimov, R. Z. Khas’minskiĭ, N. M. Nagornyĭ, V. V. Fedorchuk, B. V. Khvedelidze
Publikováno v:
Encyclopaedia of Mathematics ISBN: 9780792329756
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::91346d0ea5889d49a1cf9df9414cae75
https://doi.org/10.1007/978-1-4899-3793-3_5
https://doi.org/10.1007/978-1-4899-3793-3_5