Zobrazeno 1 - 10
of 10
pro vyhledávání: '"K., Mishal"'
In this paper, we address the problem of fair sharing of the total value of a crowd-sourced network system between major participants (founders) and minor participants (crowd) using cooperative game theory. Shapley allocation is regarded as a fair wa
Externí odkaz:
http://arxiv.org/abs/2305.12756
Autor:
K, Mishal Assif P
We compute the expected value of various quantities related to the biparametric singularities of a pair of smooth centered Gaussian random fields on an n-dimensional compact manifold, such as the lengths of the critical curves and contours of a fixed
Externí odkaz:
http://arxiv.org/abs/2202.08242
Autor:
K, Mishal Assif P, Baryshnikov, Yuliy
The goal of this note is to define biparametric persistence diagrams for smooth generic mappings $h=(f,g):M\to V\cong \mathbb{R}^2$ for smooth compact manifold $M$. Existing approaches to multivariate persistence are mostly centered on the workaround
Externí odkaz:
http://arxiv.org/abs/2110.09602
We treat the so-called scenario approach, a popular probabilistic approximation method for robust minmax optimization problems via independent and indentically distributed (i.i.d) sampling from the uncertainty set, from various perspectives. The scen
Externí odkaz:
http://arxiv.org/abs/1906.01476
We establish a geometric Pontryagin maximum principle for discrete time optimal control problems on finite dimensional smooth manifolds under the following three types of constraints: a) constraints on the states pointwise in time, b) constraints on
Externí odkaz:
http://arxiv.org/abs/1807.00698
Autor:
Assif, P. K. Mishal
Publikováno v:
Journal of Applied & Computational Topology; Sep2023, Vol. 7 Issue 3, p491-525, 35p
Publikováno v:
SIAM Journal on Optimization. 30:1119-1143
We treat the so-called scenario approach, a popular probabilistic approximation method for robust minmax optimization problems via independent and identically distributed (i.i.d.) sampling from the...
Publikováno v:
Language in India; Oct2022, Vol. 22 Issue 10, p132-146, 15p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Automatica. 114:108791
We establish a geometric Pontryagin maximum principle for discrete time optimal control problems on finite dimensional smooth manifolds under the following three types of constraints: a) constraints on the states pointwise in time, b) constraints on