Zobrazeno 1 - 10
of 1 277
pro vyhledávání: '"K., Mahesh"'
Autor:
Krishna, K. Mahesh
Let $\mathcal{X}$ be a 3-product space. Let $A: \mathcal{D}(A)\subseteq \mathcal{X}\to \mathcal{X}$, $B: \mathcal{D}(B)\subseteq \mathcal{X}\to \mathcal{X}$ and $C: \mathcal{D}(C)\subseteq \mathcal{X}\to \mathcal{X}$ be possibly unbounded 3-self-adjo
Externí odkaz:
http://arxiv.org/abs/2412.10396
Autor:
Krishna, K. Mahesh
Pfender \textit{[J. Combin. Theory Ser. A, 2007]} provided a one-line proof for a variant of the Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein upper bound for spherical codes, which offers an upper bound for the celebrated (Newton-Gregory) kissin
Externí odkaz:
http://arxiv.org/abs/2411.05047
Autor:
Krishna, K. Mahesh
Motivated from Deutsch entropic uncertainty principle and several product uncertainty principles, we derive an uncertainty principle for the product of entropies using functions.
Comment: 5 Pages, 0 Figures
Comment: 5 Pages, 0 Figures
Externí odkaz:
http://arxiv.org/abs/2411.00790
Autor:
Krishna, K. Mahesh
Breakthrough Sparsity Theorem, derived independently by Donoho and Elad \textit{[Proc. Natl. Acad. Sci. USA, 2003]}, Gribonval and Nielsen \textit{[IEEE Trans. Inform. Theory, 2003]} and Fuchs \textit{[IEEE Trans. Inform. Theory, 2004]} says that uni
Externí odkaz:
http://arxiv.org/abs/2409.09060
Autor:
Krishna, K. Mahesh
We introduce the notion of p-adic equiangular lines and derive the first fundamental relation between common angle, dimension of the space and the number of lines. More precisely, we show that if $\{\tau_j\}_{j=1}^n$ is p-adic $\gamma$-equiangular li
Externí odkaz:
http://arxiv.org/abs/2408.00810
Autor:
Krishna, K. Mahesh
Khosravi, Drnov\v{s}ek and Moslehian [\textit{Filomat, 2012}] derived Buzano inequality for Hilbert C*-modules. Using this inequality we derive Deutsch entropic uncertainty principle for Hilbert C*-modules over commutative unital C*-algebras.
Co
Co
Externí odkaz:
http://arxiv.org/abs/2407.14513
Autor:
Krishna, K. Mahesh
Let $\{\tau_n\}_{n=1}^\infty$ and $\{\omega_m\}_{m=1}^\infty$ be two modular Parseval frames for a Hilbert C*-module $\mathcal{E}$. Then for every $x \in \mathcal{E}\setminus\{0\}$, we show that \begin{align} (1) \quad \quad \quad \quad \|\theta_\tau
Externí odkaz:
http://arxiv.org/abs/2406.08504
Autor:
Krishna, K. Mahesh
Publikováno v:
Special issue of Infinite Dimensional Analysis, Quantum Probability and Related Topics in honour of Prof. K. R. Parthasarathy, 18 March 2024
In 2002, Krishna and Parthasarathy [\textit{Sankhy\={a} Ser. A}] derived discrete quantum version of Maassen-Uffink [\textit{Phys. Rev. Lett., 1988}] entropic uncertainty principle. In this paper, using the notion of continuous operator-valued frames
Externí odkaz:
http://arxiv.org/abs/2405.08003
Autor:
Krishna, K. Mahesh
Let $(\{f_n\}_{n=1}^\infty, \{\tau_n\}_{n=1}^\infty)$ and $(\{g_n\}_{n=1}^\infty, \{\omega_n\}_{n=1}^\infty)$ be unbounded continuous p-Schauder frames ($0
Externí odkaz:
http://arxiv.org/abs/2404.00910
Autor:
Krishna, K. Mahesh
We derive an uncertainty principle for Lipschitz maps acting on subsets of Banach spaces. We show that this nonlinear uncertainty principle reduces to the Heisenberg-Robertson-Schrodinger uncertainty principle for linear operators acting on Hilbert s
Externí odkaz:
http://arxiv.org/abs/2403.17946