Zobrazeno 1 - 10
of 125
pro vyhledávání: '"K Callebaut"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 14, Iss 3, Pp 581-586 (1991)
The stationary periodical problem of a vibrating rectangular plate, stressed at a segment while fixed elsewhere at one of its edges, is considered. Using the finite Fourier transformation, the problem is converted to a singular integral equation that
Externí odkaz:
https://doaj.org/article/c4e13547684245e7b6ce545e84d4dae5
Publikováno v:
Reports on mathematical physics
Exact travelling wave solutions of some nonlinear evolution equations of mathematical physics are obtained by using the mapping method and the extended F -expansion method. It is well known that different types of exact solutions of a given auxiliary
Publikováno v:
Mathematical and computer modelling
In this paper, we introduce a spectral collocation method based on Lagrange polynomials for spatial derivatives to obtain numerical solutions for some coupled nonlinear evolution equations. The problem is reduced to a system of ordinary differential
Publikováno v:
PIERS Online. 4:401-404
Autor:
Dirk K. Callebaut, Hiroshi Kikuchi
Publikováno v:
PIERS Online. 4:405-408
Chasmas are a generalization of plasmas, i.e., the condition of quasi-neutrality is dropped. That means that in chasmas the quasi-neutrality may be (strongly) violated over dis- tances many times the Debye length which requires special circumstances
Publikováno v:
Numerical algorithms
In this paper, a finite Chebyshev expansion is developed to solve Volterra integral equations with logarithmic singularities in their kernels. The error analysis is derived. Numerical results are given showing a marked improvement in comparison with
Autor:
Dirk K. Callebaut
Publikováno v:
PIERS Online. 4:429-432
Chasmas are a generalization of plasmas, i.e., the condition of quasi-neutrality is dropped. In an accompagnying paper (13) the chasma equilibria were investigated and a shielding length for chasmas was introduced which generalizes the Debye length:
Publikováno v:
Numerical algorithms
In this paper, a finite Legendre expansion is developed to solve singularly perturbed integral equations, first order integro-differential equations of Volterra type arising in fluid dynamics and Volterra delay integro-differential equations. The err