Zobrazeno 1 - 10
of 3 276
pro vyhledávání: '"Kępka A"'
Autor:
Gladbach, Peter, Kepka, Bernhard
We consider optimization problems for interacting particle systems. We show that critical points solve a Vlasov equation, and that in general no minimizers exist despite continuity of the action functional. We prove an explicit representation of the
Externí odkaz:
http://arxiv.org/abs/2404.04350
In this paper we study how to determine if a linear biochemical network satisfies the detailed balance condition, without knowing the details of all the reactions taking place in the network. To this end, we use the formalism of response functions $R
Externí odkaz:
http://arxiv.org/abs/2402.12935
In this paper we introduce a formalism that allows to describe the response of a part of a biochemical system in terms of renewal equations. In particular, we examine under which conditions the interactions between the different parts of a chemical s
Externí odkaz:
http://arxiv.org/abs/2309.02021
Autor:
Kepka, Tomáš, Korbelář, Miroslav
Let $S$ be an additively idempotent semiring and $\mathbf{M}_n(S)$ be the semiring of all $n\times n$ matrices over $S$. We characterize the conditions of when the semiring $\mathbf{M}_n(S)$ is congruence-simple provided that the semiring $S$ is eith
Externí odkaz:
http://arxiv.org/abs/2305.00587
Publikováno v:
Internat. J. Algebra Comput. 34 (2024), 407-424
It is well known that the full matrix ring over a skew-field is a simple ring. We generalize this theorem to the case of semirings. We characterize the case when the matrix semiring $\mathbf{M}_n(S)$, of all $n\times n$ matrices over a semiring $S$,
Externí odkaz:
http://arxiv.org/abs/2303.06921
We consider a two-dimensional, incompressible fluid body, together with self-induced interactions. The body is perturbed by an external particle with small mass. The whole configuration rotates uniformly around the common center of mass. We construct
Externí odkaz:
http://arxiv.org/abs/2302.01146
Autor:
Kępka, Lucyna1 (AUTHOR) lucynak618@gmail.com
Publikováno v:
Cancers. Sep2024, Vol. 16 Issue 17, p3018. 18p.
In this note we study Boltzmann's collision kernel for inverse power law interactions $U_s(r)=1/r^{s-1}$ for $s>2$ in dimension $ d=3 $. We prove the limit of the non-cutoff kernel to the hard-sphere kernel and give precise asymptotic formulas of the
Externí odkaz:
http://arxiv.org/abs/2209.14075
Let $S$ be a multiplicatively idempotent congruence-simple semiring. We show that $|S|=2$ if $S$ has a multiplicatively absorbing element. We also prove that if $S$ is finite then either $|S|=2$ or $S\cong End(L)$ or $S^{op}\cong End(L)$ where $L$ is
Externí odkaz:
http://arxiv.org/abs/2207.08160
We provide a classification of congruence-simple semirings with a multiplicatively absorbing element and without non-trivial nilpotent elements.
Externí odkaz:
http://arxiv.org/abs/2207.05448