Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Künnemann, M."'
Autor:
Künnemann, M., Nusser, A.
We revisit the classical problem of determining the largest copy of a simple polygon $P$ that can be placed into a simple polygon $Q$. Despite significant effort, known algorithms require high polynomial running times. (Barequet and Har-Peled, 2001)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1874::883457501393d203fa718553b0f9e845
https://hdl.handle.net/21.11116/0000-0009-B462-D21.11116/0000-0009-B464-B
https://hdl.handle.net/21.11116/0000-0009-B462-D21.11116/0000-0009-B464-B
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Künnemann, M., Marx, D.
Publikováno v:
Proceedings of the Computational Complexity Conference 2020
35th Computational Complexity Conference
Leibniz International Proceedings in Informatics
35th Computational Complexity Conference
Leibniz International Proceedings in Informatics
To study the question under which circumstances small solutions can be found faster than by exhaustive search (and by how much), we study the fine-grained complexity of Boolean constraint satisfaction with size constraint exactly $k$. More precisely,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f0dd0ace24cc6b7d561d19779c38663
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
34th Computational Complexity Conference
Leibniz International Proceedings in Informatics
Leibniz International Proceedings in Informatics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1874::7784ebed06fcf124d33f8780a6da8bdf
https://hdl.handle.net/21.11116/0000-0005-1FAF-5
https://hdl.handle.net/21.11116/0000-0005-1FAF-5
Publikováno v:
Scopus-Elsevier
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::20dfa280138f4d009449f768f4630bce
https://doi.org/10.1137/1.9781611975482.69
https://doi.org/10.1137/1.9781611975482.69
Publikováno v:
Journal of Computational Geometry
35th International Symposium on Computational Geometry
Leibniz International Proceedings in Informatics
35th International Symposium on Computational Geometry
Leibniz International Proceedings in Informatics
The Fréchet distance provides a natural and intuitive measure for the popular task of computing the similarity of two (polygonal) curves. While a simple algorithm computes it in near-quadratic time, a strongly subquadratic algorithm cannot exist unl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57f4cdba3fb682d3813c228bfcc416ab
The discrete Fr\'echet distance is a popular measure for comparing polygonal curves. An important variant is the discrete Fr\'echet distance under translation, which enables detection of similar movement patterns in different spatial domains. For pol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1874::b21aa3730b2598aa2519896d28c1821a
https://hdl.handle.net/21.11116/0000-0002-9E37-F21.11116/0000-0002-9E35-1
https://hdl.handle.net/21.11116/0000-0002-9E37-F21.11116/0000-0002-9E35-1
Autor:
Bringmann, K., Künnemann, M.
We revisit the classic combinatorial pattern matching problem of finding a longest common subsequence (LCS). For strings $x$ and $y$ of length $n$, a textbook algorithm solves LCS in time $O(n^2)$, but although much effort has been spent, no $O(n^{2-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1874::15f59733769d435169a9a9a3f17f0be1
https://hdl.handle.net/21.11116/0000-0001-3E02-821.11116/0000-0001-3E04-6
https://hdl.handle.net/21.11116/0000-0001-3E02-821.11116/0000-0001-3E04-6
Autor:
Künnemann, M D
Publikováno v:
RöFo: Fortschritte auf dem Gebiet der Röntgenstrahlen und der Bildgebenden Verfahren; 2024 Supplement 1, Vol. 196, pS52-S52, 1p