Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Külshammer, Julian"'
Autor:
Jasso, Gustavo, Külshammer, Julian
Publikováno v:
Representations of algebras, Vol. 705, Contemp. Math., Amer. Math. Soc., Providence, RI, p. 79-98 (2018)
This paper surveys recent contructions in higher Auslander--Reiten theory. We focus on those which, due to their combinatorial properties, can be regarded as higher dimensional analogues of path algebras of linearly oriented type $\mathbb{A}$ quivers
Externí odkaz:
http://arxiv.org/abs/2402.15889
Autor:
Külshammer, Julian
In this survey article we propose the notion of a bound quiver for an exact category generalising the classical concept of the Gabriel quiver and its relation for a module category as certain ring extension. The notion is motivated by joint work of t
Externí odkaz:
http://arxiv.org/abs/2312.13205
We investigate the (separated) monomorphism category $\operatorname{mono}(Q,\Lambda)$ of a quiver $Q$ over an Artin algebra $\Lambda$. We construct an epivalence from $\overline{\operatorname{mono}}(Q,\Lambda)$ to $\operatorname{rep}(Q,\overline{\ope
Externí odkaz:
http://arxiv.org/abs/2303.07753
Autor:
Külshammer, Julian, Miemietz, Vanessa
Together with Koenig and Ovsienko, the first author showed that every quasi-hereditary algebra can be obtained as the (left or right) dual of a directed bocs. In this monograph, we prove that if one additionally assumes that the bocs is basic, a noti
Externí odkaz:
http://arxiv.org/abs/2109.03586
Up to Morita equivalence, every quasi-hereditary algebra is the dual algebra of a directed bocs or coring. From the bocs, an exact Borel subalgebra is obtained. In this paper a characterisation of exact Borel subalgebras arising in this way is given.
Externí odkaz:
http://arxiv.org/abs/1907.12862
We introduce a very general extension of the monomorphism category as studied by Ringel and Schmidmeier which in particular covers generalised species over locally bounded quivers. We prove that analogues of the kernel and cokernel functor send almos
Externí odkaz:
http://arxiv.org/abs/1907.04657
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In their previous work, S. Koenig, S. Ovsienko and the second author showed that every quasi-hereditary algebra is Morita equivalent to the right algebra, i.e. the opposite algebra of the left dual, of a coring. Let $A$ be an associative algebra and
Externí odkaz:
http://arxiv.org/abs/1701.06222
Autor:
Külshammer, Julian
In this paper, we generalise part of the theory of hereditary algebras to the context of prospecies of algebras. Here, a prospecies is a generalisation of Gabriel's concept of species gluing algebras via projective bimodules along a quiver to obtain
Externí odkaz:
http://arxiv.org/abs/1608.01934
Autor:
Jasso, Gustavo, Külshammer, Julian
Publikováno v:
Adv. Math. 351 (2019), 1139-1200
We introduce higher dimensional analogues of the Nakayama algebras from the viewpoint of Iyama's higher Auslander--Reiten theory. More precisely, for each Nakayama algebra $A$ and each positive integer $d$, we construct a finite dimensional algebra $
Externí odkaz:
http://arxiv.org/abs/1604.03500