Zobrazeno 1 - 4
of 4
pro vyhledávání: '"König, H.M.T."'
Publikováno v:
Machine Learning, 111, 4565-4584
Machine learning 111(12), 4565-4584 (2022). doi:10.1007/s10994-022-06212-w
Machine learning 111(12), 4565-4584 (2022). doi:10.1007/s10994-022-06212-w
Machine learning 111(12), 4565-4584 (2022). doi:10.1007/s10994-022-06212-w
Published by Springer Science + Business Media B.V, Dordrecht [u.a.]
Published by Springer Science + Business Media B.V, Dordrecht [u.a.]
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3393b15c9ca84040a19624fd42acceb0
http://hdl.handle.net/1887/3484755
http://hdl.handle.net/1887/3484755
Publikováno v:
ICLR Workshop on Security and Safety in Machine Learning Systems
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f93db6b5c29198d94626d5b798c3d8d4
https://hdl.handle.net/1887/3277268
https://hdl.handle.net/1887/3277268
Autor:
Veloso, B., Carprese, L., König, H.M.T., Manco, G., Hoos, H.H., Gama, J., Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A., Teixeira S.
Publikováno v:
Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021, 249-264. Cham: Springer International Publishing
STARTPAGE=249;ENDPAGE=264;TITLE=Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021
STARTPAGE=249;ENDPAGE=264;TITLE=Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021
We present an online optimization method for time-evolving data streams that can automatically adapt the hyper-parameters of an embedding model. More specifically, we employ the Nelder-Mead algorithm, which uses a set of heuristics to produce and exp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::59a5859916a15467778ac3acd584745d
https://hdl.handle.net/1887/3277022
https://hdl.handle.net/1887/3277022
Publikováno v:
ICML Workshop on automated machine learning
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::cb748c8e2e9bae7ad24b706a683dcfd4
https://hdl.handle.net/1887/3422642
https://hdl.handle.net/1887/3422642