Zobrazeno 1 - 10
of 100
pro vyhledávání: '"K, Vishnu P."'
We propose a class of dark matter models based on a chiral $U(1)$ gauge symmetry acting on a dark sector. The chiral $U(1)$ protects the masses of the dark sector fermions, and also guarantees the stability of the dark matter particle by virtue of an
Externí odkaz:
http://arxiv.org/abs/2409.09008
Stringent constraints from the dark matter (DM) direct detection experiments can be naturally evaded for a pseudo-Nambu-Goldstone boson (pNGB) DM. We propose a realization of pNGB DM in the context of a left-right symmetric model, wherein the neutrin
Externí odkaz:
http://arxiv.org/abs/2407.05482
We propose a simple extension to the Standard Model, wherein neutrinos naturally attain small Majorana masses through a one-loop radiative mechanism featuring particles within the loops characterized by milli-charges. Unlike the conventional scotogen
Externí odkaz:
http://arxiv.org/abs/2406.18641
The near orthgonality of certain $k$-vectors involving the Ramanujan sums were studied by E. Alkan in [J. Number Theory, 140:147--168 (2014)]. Here we undertake the study of similar vectors involving a generalization of the Ramanujan sums defined by
Externí odkaz:
http://arxiv.org/abs/2312.07098
Srinivasa Ramanujan provided Fourier series expansions of certain arithmetical functions in terms of the exponential sum defined by $c_q(n)=\sum\limits_{\substack{{m=1}\\(m,q)=1}}^{q}e^{\frac{2 \pi imn}{q}}$. Later, H. Delange derived the bound $\sum
Externí odkaz:
http://arxiv.org/abs/2312.05936
For an arithmetical function $f$, its Ramanujan expansion is a series expansion in the form $f(n)=\sum\limits_{k=1}^{\infty}a(k) c_k(n)$ where $a(k)$ are complex numbers and $c_k(n):= \sum\limits_{\substack{m=1\\(m, k)=1}}^{k}e^{\frac{2\pi imn}{k}}$
Externí odkaz:
http://arxiv.org/abs/2312.05938
Publikováno v:
Physics Letters B 845 (2023) 138167
We present a minimal sub-GeV thermal Dark Matter (DM) model where the DM primarily interacts with neutrinos and participates in neutrino mass generation through quantum loop corrections at one-loop level. We discuss the challenges in achieving this i
Externí odkaz:
http://arxiv.org/abs/2307.15760
For Dirichlet characters $\chi$ mod $k$ where $k\geq 3$, we here give a computable formula for evaluating the mean square sums $\sum\limits_{\substack{\chi \text{ mod }k\\\chi(-1)=(-1)^r}}|L(r,\chi)|^2$ for any positive integer $r\geq 3$. We also giv
Externí odkaz:
http://arxiv.org/abs/2307.01889
Autor:
Chandran, Arya, Namboothiri, K Vishnu
Menon's identity is a classical identity involving gcd sums and the Euler totient function $\phi$. We derived the Menon-type identity $\sum\limits_{\substack{m=1\\(m.n^s)_s=1}}^{n^s} (m-1,n^s)_s=\Phi_s(n^s)\tau_s(n^s)$ in Czechoslovak Math. J., 72(1)
Externí odkaz:
http://arxiv.org/abs/2307.00346
Using combinatorial techniques, we derive a recurrence identity that expresses an exponential power sum with negative powers in terms of another exponential power sum with positive powers. Consequently, we derive a formula for the power sum of the fi
Externí odkaz:
http://arxiv.org/abs/2303.10853