Zobrazeno 1 - 10
of 177
pro vyhledávání: '"Juurlink, Ben"'
Publikováno v:
In Microelectronics Reliability November 2021 126
Autor:
Cosenza, Biagio, Popov, Nikita, Juurlink, Ben, Richmond, Paul, Chimeh, Mozhgan Kabiri, Spagnuolo, Carmine, Cordasco, Gennaro, Scarano, Vittorio
Publikováno v:
In Future Generation Computer Systems March 2021 116:61-75
Publikováno v:
In Performance Evaluation July 2020 140-141
Publikováno v:
In Microprocessors and Microsystems November 2018 63:158-168
Autor:
Wang, Biao, de Souza, Diego Felix, Alvarez-Mesa, Mauricio, Chi, Chi Ching, Juurlink, Ben, Ilić, Aleksandar, Roma, Nuno, Sousa, Leonel
Publikováno v:
In Signal Processing: Image Communication March 2018 62:93-105
Publikováno v:
36th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2022)
High-bandwidth off-chip memory has played a key role in the success of Graphics Processing Units (GPUs) as an accelerator. However, as memory bandwidth scaling continues to lag behind the computational power, it remains a key bottleneck in computing
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ACM International Conference on Computing Frontiers
Dynamic frequency scaling is broadly available among different modern computer architectures, making it possible to improve the performance and energy efficiency of an application by carefully setting the core frequency. However, while an exhaustive
High-Level Synthesis (HLS) improves productivity compared to Register-Transfer Level (RTL) hardware descriptions. Despite its rise in popularity, there is still a performance gap compared to RTL design flows. One promising approach to bridge this gap
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______793::bb982dbe6ea23c52a961ba6c5d5e562c
https://depositonce.tu-berlin.de/handle/11303/13881
https://depositonce.tu-berlin.de/handle/11303/13881
Autor:
Lal, Sohan, Juurlink, Ben
Traditionally, GPUs only had programmer-managed caches. The advent of hardware-managed caches accelerated the use of GPUs for general-purpose computing. However, as GPU caches are shared by thousands of threads, they are usually a victim of contentio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______793::e1d23da971b27dfb86c7ef860458b7bd
https://depositonce.tu-berlin.de/handle/11303/11220
https://depositonce.tu-berlin.de/handle/11303/11220