Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Jutta Hausen"'
Autor:
Jutta Hausen, Johnny A. Johnson
Publikováno v:
Publicationes Mathematicae Debrecen. 38:33-38
Autor:
Jutta Hausen, Johnny A. Johnson
Publikováno v:
Publicationes Mathematicae Debrecen. 30:53-55
Autor:
Jutta Hausen
Publikováno v:
Abelian Groups ISBN: 9781003071761
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0b541a31f987d81b823c978ff4cbf90f
https://doi.org/10.1201/9781003071761-16
https://doi.org/10.1201/9781003071761-16
Autor:
Phillip Schultz, Jutta Hausen
Publikováno v:
Proceedings of the American Mathematical Society. 126:2525-2533
Let p p be a prime number and let G \,G\, be an abelian p p –group. Let Δ \Delta be the maximal normal p p –subgroup of Aut G \operatorname {Aut}G and ζ \zeta the maximal p p –subgroup of its centre. Let t \mathbf {t} be the torsion radic
Autor:
Jutta Hausen, Johnny A. Johnson
Publikováno v:
Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics. 59:173-183
Given an R-module M, the centralizer near-ring ℳR (M) is the set of all functions f: M → M with f(xr)= f(x)r for all x ∈ M and r∈R endowed with point-wise addition and composition of functions as multiplication. In general, ℳR(M) is not a r
Autor:
Jutta Hausen, Ulrich Albrecht
Publikováno v:
Proceedings of the American Mathematical Society. 123:2381-2389
A non-singular R-module M is a ray for the class of all non-singular modules if every R-homogeneous map from M into a non-singular module is additive. Every essential extension of a non-singular locally cyclic module is a ray. We investigate the stru
Publikováno v:
Mathematische Zeitschrift. 216:431-436
A celebrated theorem due to Baer and Kaplansky states that two abelian p-groups are isomorphic if (and only if) their endomorphism rings are isomorphic [B, K]. In fact, every isomorphism between their endomorphism rings is induced by an isomorphism b
Publikováno v:
Bulletin of the Australian Mathematical Society. 45:91-103
A ring R is said to be an AE-ring if every endomorphism of its additive group R+ is a ring endomorphism. Clearly, the zero ring on any abelian group is an AE-ring. In a recent article, Birkenmeier and Heatherly characterised the so-called standard AE
Autor:
Jutta Hausen, Ulrich Albrecht
Publikováno v:
Bulletin of the Australian Mathematical Society. 44:189-201
Given a torsion-free abelian group G, a subgroup A of G is said to be a quasi-summand of G if nG ≤ A ⊕ B ≤ G for some subgroup B of G and some positive integer n. If the intersection of any two quasi-summands of G is a quasi-summand, then G is
Publikováno v:
Periodica Mathematica Hungarica. 23:65-73