Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Justino Sánchez"'
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. :1-26
We devote this paper to study semi-stable nonconstant radial solutions of $S_k(D^2u)=w(\left \vert x \right \vert )g(u)$ on the Euclidean space $\mathbb {R}^n$ . We establish pointwise estimates and necessary conditions for the existence of such solu
Autor:
Justino Sánchez
Publikováno v:
Journal of Differential Equations. 268:1840-1853
We study the long-time behavior of solutions of the $k$-Hessian evolution equation $u_t=S_{k}(D^2 u)$, posed on a bounded domain of the $n$-dimensional space with homogeneous boundary conditions. To this end, we construct a separable solution and we
Autor:
Justino Sánchez, Miguel Angel Navarro
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 150:2083-2115
We consider semistable, radially symmetric and increasing solutions of Sk(D2u) = g(u) in the unit ball of ℝn, where Sk(D2u) is the k-Hessian operator of u and g ∈ C1 is a general positive nonlinearity. We establish sharp pointwise estimates for s
Autor:
Justino Sánchez, Vicente Vergara
Publikováno v:
Journal of Differential Equations. 263:687-708
We consider the problem (1) { S k ( D 2 u ) = λ | x | σ ( 1 − u ) q in B , u 0 in B , u = 0 on ∂ B , where B denotes the unit ball in R n , n > 2 k ( k ∈ N ), λ > 0 , q > k and σ ≥ 0 . We study the existence, multiplicity and uniqueness o
Autor:
Justino Sánchez, Miguel Angel Navarro
Publikováno v:
Journal of Mathematical Analysis and Applications. 497:124902
We characterize semistable radial solutions of the equation S k ( D 2 u ) = g ( u ) in B 1 , where B 1 is the unit ball of R n , D 2 u is the Hessian matrix of u , g is a positive C 1 nonlinearity and S k ( D 2 u ) denotes the k-Hessian operator of u
Autor:
Justino Sánchez, Vicente Vergara
Publikováno v:
Journal of Differential Equations. 261:797-820
We consider the problem (1) { S k ( D 2 u ) = λ ( 1 − u ) q in B , u 0 in B , u = 0 on ∂ B , where B denotes the unit ball in R n , n > 2 k ( k ∈ N ), λ > 0 and q > k . We study the existence of negative bounded radially symmetric solutions o
The aim of this paper is to deal with the $k$-Hessian counterpart of the Laplace equation involving a nonlinearity studied by Matukuma. Namely, our model is the problem \begin{equation*} (1)\;\;\;\begin{cases} S_k(D^2u)= ��\frac{|x|^{��-2}}{(
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c66817cc762806e1fe8afe5d6c1998f
http://arxiv.org/abs/1807.11644
http://arxiv.org/abs/1807.11644
Publikováno v:
Complex Variables and Elliptic Equations. 61:297-314
Using fixed point techniques, we study the existence and multiplicity of positive radial solutions for two classes of nonlocal elliptic systems defined on bounded annular domains or exterior domains. To this end, we reduce our problem to second-order
Positive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros
Publikováno v:
Mathematische Nachrichten. 287:1131-1141
We study existence, multiplicity, and the behavior, with respect to λ, of positive radially symmetric solutions of −Δu=λh(x,u) in annular domains in RN,N≥2. The nonlinear term has a superlinear local growth at infinity, is nonnegative, and sat
Autor:
Justino Sánchez, Vicente Vergara
Publikováno v:
ASYMPTOTIC ANALYSIS
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Artículos CONICYT
CONICYT Chile
instacron:CONICYT