Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Justina Gianatti"'
Publikováno v:
SIAM Journal on Control and Optimization. 61:105-134
The objective of this paper is to analyze the existence of equilibria for a class of deterministic mean field games of controls. The interaction between players is due to both a congestion term and a price function which depends on the distributions
Autor:
Justina Gianatti, J. Frédéric Bonnans
Publikováno v:
SIAM Journal on Control and Optimization. 58:2206-2235
The aim of this work is to study an optimal control problem with state constraints where the state is given by an age-structured, abstract parabolic differential equation. We prove the existence and uniqueness of solution for the state equation and p
Publikováno v:
Mathematical Modelling of Natural Phenomena
Mathematical Modelling of Natural Phenomena, EDP Sciences, In press
Mathematical Modelling of Natural Phenomena, In press, ⟨10.1051/mmnp/2020035⟩
Mathematical Modelling of Natural Phenomena, EDP Sciences, In press
Mathematical Modelling of Natural Phenomena, In press, ⟨10.1051/mmnp/2020035⟩
International audience; We propose a model for the COVID-19 epidemic where the population is partitioned into classes corresponding to ages (that remain constant during the epidemic). The main feature is to take into account the infection age of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b204fdf60b924bd352d71bd99dfaada3
https://hal.inria.fr/hal-02558980/file/covid-19-BonnansGianatti.pdf
https://hal.inria.fr/hal-02558980/file/covid-19-BonnansGianatti.pdf
Publikováno v:
SIAM Journal on Control and Optimization. 59:1756-1756
We correct an error in the definition of the state space in [SIAM J. Control Optim., 58 (2020), pp. 2206--2235].
In this work, we address an uncertain minimax optimal control problem with linear dynamics where the objective functional is the expected value of the supremum of the running cost over a time interval. By taking an independently drawn random sample,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9194a663827a1a516c94c863c68a716d
https://link.springer.com/article/10.1007/s11228-017-0450-7
https://link.springer.com/article/10.1007/s11228-017-0450-7
Publikováno v:
ESAIM: Control, Optimisation and Calculus of Variations
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2019, ⟨10.1051/cocv/2018045⟩
ESAIM: Control, Optimisation and Calculus of Variations, 2019, ⟨10.1051/cocv/2018045⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2019, ⟨10.1051/cocv/2018045⟩
ESAIM: Control, Optimisation and Calculus of Variations, 2019, ⟨10.1051/cocv/2018045⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
In this work, we consider the time discretization of stochastic optimal control problems. Under general assumptions on the data, we prove the convergence of the value functions associated with the discrete time problems to the value function of the o
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We address minimax optimal control problems with linear dynamics. Under convexity assumptions, by using non-smooth optimization techniques, we derive a set of optimality conditions for the continuous-time case. We define an approximated discrete-time
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::24f09c2f85c557db6aa65d7349fe5627
http://www.sciencedirect.com/science/article/pii/S016763771630075X
http://www.sciencedirect.com/science/article/pii/S016763771630075X
Publikováno v:
Mathematical Control and Related Fields
Mathematical Control and Related Fields, AIMS, 2016, ⟨10.3934/mcrf.2016008⟩
Mathematical Control and Related Fields, 2016, ⟨10.3934/mcrf.2016008⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Mathematical Control and Related Fields, AIMS, 2016, ⟨10.3934/mcrf.2016008⟩
Mathematical Control and Related Fields, 2016, ⟨10.3934/mcrf.2016008⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We analyze an algorithm for solving stochastic control problems, based on Pontryagin’s maximum principle, due to Sakawa and Shindo in the deterministic case and extended to the stochastic setting by Mazliak. We assume that either the volatility is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1a0fb0ea9971033b2b2bdd08bdf8bcf3
https://hal-unilim.archives-ouvertes.fr/hal-01148272v2/document
https://hal-unilim.archives-ouvertes.fr/hal-01148272v2/document