Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Justin Noel"'
Publikováno v:
Clausen, D, Mathew, A, Naumann, N & Noel, J 2020, ' Descent in algebraic K-theory and a conjecture of Ausoni-Rognes ', Journal of the European Mathematical Society, vol. 22, no. 4, pp. 1149-1200 . https://doi.org/10.4171/JEMS/942
Let $A \to B$ be a $G$-Galois extension of rings, or more generally of $\mathbb{E}_\infty$-ring spectra in the sense of Rognes. A basic question in algebraic $K$-theory asks how close the map $K(A) \to K(B)^{hG}$ is to being an equivalence, i.e., how
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e32d6e2e5384e70885a742b252b30b62
https://curis.ku.dk/portal/da/publications/descent-in-algebraic-ktheory-and-a-conjecture-of-ausonirognes(c28ca87c-85e2-427a-b5eb-ac848eda9b01).html
https://curis.ku.dk/portal/da/publications/descent-in-algebraic-ktheory-and-a-conjecture-of-ausonirognes(c28ca87c-85e2-427a-b5eb-ac848eda9b01).html
Publikováno v:
Geom. Topol. 23, no. 2 (2019), 541-636
Let $G$ be a finite group. To any family $\mathscr{F}$ of subgroups of $G$, we associate a thick $\otimes$-ideal $\mathscr{F}^{\mathrm{Nil}}$ of the category of $G$-spectra with the property that every $G$-spectrum in $\mathscr{F}^{\mathrm{Nil}}$ (wh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f9bc9b4fdbc6b3e8acd37ca8dcda1ed
https://projecteuclid.org/euclid.gt/1555466424
https://projecteuclid.org/euclid.gt/1555466424
Autor:
Markus Hausmann, Nathaniel Stapleton, Justin Noel, Niko Naumann, Tobias Barthel, Thomas Nikolaus
Publikováno v:
Inventiones Mathematicae
For a finite abelian group $A$, we determine the Balmer spectrum of $\mathrm{Sp}_A^{\omega}$, the compact objects in genuine $A$-spectra. This generalizes the case $A=\mathbb{Z}/p\mathbb{Z}$ due to Balmer and Sanders \cite{Balmer-Sanders}, by establi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::756367d08df2bd17bcae6a1e4cd8c5a7
Autor:
Justin Noel
Publikováno v:
Contemporary Mathematics. :237-240
Let $G$ be a finite group and let $\mathscr{F}$ be a family of subgroups of $G$. We introduce a class of $G$-equivariant spectra that we call $\mathscr{F}$-nilpotent. This definition fits into the general theory of torsion, complete, and nilpotent ob
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a08e3c853a002602737128e53947187b
http://arxiv.org/abs/1507.06869
http://arxiv.org/abs/1507.06869
We prove a conjecture of J.P. May concerning the nilpotence of elements in ring spectra with power operations, i.e., $H_\infty$-ring spectra. Using an explicit nilpotence bound on the torsion elements in $K(n)$-local $H_\infty$-algebras over $E_n$, w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::75aaee3798aab158115a5233abaff2f0
Autor:
Justin Noel, Niles Johnson
Publikováno v:
Advances in Mathematics
The settings for homotopical algebra---categories such as simplicial groups, simplicial rings, $A_\infty$ spaces, $E_\infty$ ring spectra, etc.---are often equivalent to categories of algebras over some monad or triple $T$. In such cases, $T$ is acti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fed88bf90d6e6679de52429741133167
http://arxiv.org/abs/1301.1511
http://arxiv.org/abs/1301.1511
Autor:
Niles Johnson, Justin Noel
We show, for primes p less than or equal to 13, that a number of well-known MU_(p)-rings do not admit the structure of commutative MU_(p)-algebras. These spectra have complex orientations that factor through the Brown-Peterson spectrum and correspond
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::79f3b1c8d366b460cdc3d84d1f656d3f
Autor:
Philip C. Noble, Justin Noel, Marco Bosselmann, K. B Mathis, Richard F. Santore, Jerry W. Alexander
Publikováno v:
The Journal of Arthroplasty. 22:314