Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Jurgen Berndt"'
Autor:
Jurgen Berndt
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 202:619-655
This paper deals with a limiting case motivated by contact geometry. The limiting case of a tensorial characterization of contact hypersurfaces in Kahler manifolds leads to Hopf hypersurfaces whose maximal complex subbundle of the tangent bundle is i
Autor:
Carlos Olmos, Jurgen Berndt
Publikováno v:
Berndt, J & Olmos, C 2020, ' The index conjecture for symmetric spaces ', J Reine Angew Math, vol. 2021, no. 772, pp. 187-222 . https://doi.org/10.1515/crelle-2020-0025
In 1980, Onishchik introduced the index of a Riemannian symmetric space as the minimal codimension of a (proper) totally geodesic submanifold. He calculated the index for symmetric spaces of rank less than or equal to 2, but for higher rank it was un
Autor:
Carlos Olmos, Jurgen Berndt
Publikováno v:
Bulletin of the London Mathematical Society. 49:903-907
Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal codimension of a (non-trivial) totally geodesic submanifold of M. The purpose of this note is to determine the index i(M) for all irreducible Riemannian symmetric
Autor:
Young Jin Suh, Jurgen Berndt
Publikováno v:
Berndt, J & Suh, Y J 2019, ' REAL HYPERSURFACES WITH ISOMETRIC REEB FLOW IN KAHLER MANIFOLDS ', COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, vol. 23, no. 1 . https://doi.org/10.1142/S0219199719500391
We investigate the structure of real hypersurfaces with isometric Reeb flow in Kähler manifolds. As an application we classify real hypersurfaces with isometric Reeb flow in irreducible Hermitian symmetric spaces of compact type.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1be98336a08223e370b4cd2acbac5078
https://kclpure.kcl.ac.uk/ws/files/107243211/Real_Hypersurfaces_Berndt_11_Mar_19_GREEN_AAM.pdf
https://kclpure.kcl.ac.uk/ws/files/107243211/Real_Hypersurfaces_Berndt_11_Mar_19_GREEN_AAM.pdf
Publikováno v:
King's College London
The index of a Riemannian symmetric space is the minimal codimension of a proper totally geodesic submanifold (Onishchik, 1980). There is a conjecture by the first two authors for how to calculate the index. In this paper we give an affirmative answe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::63ad8fdf28b8ff0c4c7c4a6a51049060
Publikováno v:
Berndt, J, Díaz-Ramos, J C & Vanaei, M J 2017, ' Cohomogeneity one actions on Minkowski spaces ', MONATSHEFTE FUR MATHEMATIK, vol. 184, no. 2, pp. 185–200 . https://doi.org/10.1007/s00605-016-0945-6
We study isometric cohomogeneity one actions on the \((n+1)\)-dimensional Minkowski space \(\mathbb {L}^{n+1}\) up to orbit-equivalence. We give examples of isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\) whose orbit spaces are non-Hausd
Autor:
Carlos Olmos, Jurgen Berndt
Publikováno v:
Berndt, J & Olmos, C 2018, ' On the index of symmetric spaces ', Journal fur die Reine und Angewandte Mathematik, vol. 737, pp. 33-48 . https://doi.org/10.1515/crelle-2015-0060
Let M be an irreducible Riemannian symmetric space. The index of M is the minimal codimension of a (non-trivial) totally geodesic submanifold of M. We prove that the index is bounded from below by the rank of the symmetric space. We also classify the
Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred sin
Autor:
Jurgen Berndt, Carlos Olmos
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
J. Differential Geom. 104, no. 2 (2016), 187-217
Berndt, J & Olmos, C 2016, ' Maximal totally geodesic submanifolds and index of symmetric spaces ', JOURNAL OF DIFFERENTIAL GEOMETRY, vol. 104, no. 2, pp. 187-217 . https://doi.org/10.4310/jdg/1476367055
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
J. Differential Geom. 104, no. 2 (2016), 187-217
Berndt, J & Olmos, C 2016, ' Maximal totally geodesic submanifolds and index of symmetric spaces ', JOURNAL OF DIFFERENTIAL GEOMETRY, vol. 104, no. 2, pp. 187-217 . https://doi.org/10.4310/jdg/1476367055
Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal codimension of a totally geodesic submanifold of M. In previous work the authors proved that i(M) is bounded from below by the rank rk(M) of M. In this paper we cl