Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Jurandir Ceccon"'
Autor:
Jurandir Ceccon, Marcos Montenegro
Publikováno v:
Anais da Academia Brasileira de Ciências, Vol 77, Iss 4, Pp 581-587 (2005)
We prove general optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities by using mass transportation and convex analysis results. Explicit extremals and the computation of some optimal constants are also provided. In particular we extend the
Externí odkaz:
https://doaj.org/article/fb7e22e2755b4813b7a4dc056cded847
Publikováno v:
The Journal of Geometric Analysis. 31:913-952
Let M be a smooth compact manifold of dimension $$n \ge 1$$ without boundary endowed with a volume form $$\omega $$ and a fibrewise norm $$\mathcal {N}:T^*M \rightarrow \mathbb {R}$$ . For any $$p > q \ge 1$$ and corresponding interpolation parameter
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 49:339-367
Let (M, g) be a n-dimensional smooth compact Riemannian manifold without boundary with $$n\ge 2$$ . We prove that the optimal Riemannian p-entropy inequality $$\begin{aligned} \int _M |u|^p\log (|u|^p) \; dv_g\le \dfrac{n}{\tau }\log \left[ {\mathcal
Autor:
Jurandir Ceccon
Publikováno v:
ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :435-457
Let (M, g) be a smooth compact Riemannian manifold of dimension 2 ≤ n, let 1 < p and 1 ≤q < p. In this paper, we establish the validity of the optimal Nash inequality and the existence of extremal functions for this optimal inequality
Autor:
Carlos E. Duran, Jurandir Ceccon
Publikováno v:
Journal of Mathematical Analysis and Applications. 433:260-281
Let ( M , g ) be a smooth compact Riemannian manifold of dimension n ≥ 2 , 1 p n and 1 ≤ q r p ⁎ = n p n − p be real parameters. This paper concerns the validity of the optimal Gagliardo–Nirenberg inequality ( ∫ M | u | r d v g ) τ r θ
Autor:
Jurandir Ceccon, Marcos Teixeira Alves
Publikováno v:
Journal of Differential Equations. 260:1558-1584
We consider ( M , g ) a smooth compact Riemannian manifold of dimension n ≥ 2 without boundary, 1 p a real parameter and r = p ( n + p ) n . This paper concerns the validity of the optimal Moser inequality ( ∫ M | u | r d v g ) τ p ≤ ( A ( p ,
Autor:
Marcos Montenegro, Jurandir Ceccon
Publikováno v:
Advances in Calculus of Variations. 9:127-141
We consider the functional Φ(u) = ∫Ω |∇u|2 d x - ∫Ω G(u)d x constrained to the set EF = {u ∈ W 0 1,2(Ω,ℝ k ) : ∫Ω F(u)d x = 1}, where Ω is a bounded open subset of ℝ n and F,G : ℝ k → ℝ are continuous functions satisfying ce
Autor:
Jurandir Ceccon, Leandro Cioletti
Publikováno v:
Journal of Mathematical Analysis and Applications. 423:10-17
Let ( M , g ) be a smooth compact Riemannian manifold of dimension n ≥ 2 . This paper concerns the validity of the optimal Riemannian L 1 -Entropy inequality Ent d v g ( u ) ≤ n log ( A opt ‖ D u ‖ BV ( M ) + B opt ) for all u ∈ BV ( M
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 194:1393-1421
Let $$(M,g)$$ be a closed Riemannian manifold of dimension $$n \ge 2$$ . In Ceccon and Montenegro (Math Z 258:851–873, 2008; J Diff Equ 254(6):2532–2555, 2013) showed that, for any $$1 < p \le 2$$ and $$1 \le q < r < p^* = \frac{np}{n-p}$$ , ther
Autor:
Jurandir Ceccon, Marcos Montenegro
Publikováno v:
Journal of Differential Equations. 254:2532-2555
Let ( M , g ) be a smooth compact Riemannian manifold of dimension n ⩾ 2 and let 1 p n and 1 ⩽ q r p ⁎ = n p n − p be real parameters. This paper concerns to the validity of the optimal Gagliardo–Nirenberg inequality ( ∫ M | u | r d v g )