Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Juraj, Földes"'
We consider a fourth-order extension of the Allen-Cahn model with mixed-diffusion and Navier boundary conditions. Using variational and bifurcation methods, we prove results on existence, uniqueness, positivity, stability, a priori estimates, and sym
Externí odkaz:
http://arxiv.org/abs/1509.07468
Publikováno v:
Stochastic Processes and their Applications. 149:188-223
We study the almost sure behavior of solutions of stochastic differential equations (SDEs) as time goes to zero. Our main general result establishes a functional law of the iterated logarithm (LIL) that applies in the setting of SDEs with degenerate
Autor:
Juraj Földes, David P. Herzog
Publikováno v:
Probability Surveys. 20
Publikováno v:
Stochastics and Dynamics. 21
We study stability of solutions for a randomly driven and degenerately damped version of the Lorenz ’63 model. Specifically, we prove that when damping is absent in one of the temperature components, the system possesses a unique invariant probabil
Symmetry properties of sign-changing solutions to nonlinear parabolic equations in unbounded domains
We study the asymptotic (in time) behavior of positive and sign-changing solutions to nonlinear parabolic problems in the whole space or in the exterior of a ball with Dirichlet boundary conditions. We show that, under suitable regularity and stabili
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::646123ac6485804493ef7ef79c9a31ea
http://arxiv.org/abs/2104.04555
http://arxiv.org/abs/2104.04555
Autor:
Jean-Baptiste Casteras, Juraj Földes
We study singular radially symmetric solution to the Lin-Ni-Takagi equation for a supercritical power non-linearity in dimension $N\geq 3$. It is shown that for any ball and any $k \geq 0$, there is a singular solution that satisfies Neumann boundary
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::356194aead480855a1f44897b9f3c379
http://hdl.handle.net/10138/321645
http://hdl.handle.net/10138/321645
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We prove a unified and general criterion for the uniqueness of critical points of a functional in the presence of constraints such as positivity, boundedness, or fixed mass. Our method relies on convexity properties along suitable paths and significa
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 26
We establish the convergence of statistically invariant states for the stochastic Boussinesq Equations in the infinite Prandtl number limit and in particular demonstrate the convergence of the Nusselt number (a measure of heat transport in the fluid)
Publikováno v:
Annali di matematica pura ed applicata, 198 (3
In this paper, we study the static Born–Infeld equation -div(∇u1
SCOPUS: ar.j
info:eu-repo/semantics/published
SCOPUS: ar.j
info:eu-repo/semantics/published
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c6a1a680d436ec9aa9a41e6aafe1a1b0
http://hdl.handle.net/11585/771355
http://hdl.handle.net/11585/771355
Autor:
Juraj Földes, Tuoc Phan
In this note we establish existence and uniqueness of weak solutions of linear elliptic equation $\text{div}[\mathbf{A}(x) \nabla u] = \text{div}{\mathbf{F}(x)}$, where the matrix $\mathbf{A}$ is just measurable and its skew-symmetric part can be unb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7c4ec91bdaba8a738970f58d302ef9a0