Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Juntang Ding"'
Autor:
Xuhui Shen, Juntang Ding
Publikováno v:
Electronic Journal of Differential Equations, Vol 2022, Iss 08,, Pp 1-17 (2022)
Externí odkaz:
https://doaj.org/article/816c13e7b46a4cd9aec1d566d306fd72
Autor:
Juntang Ding
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-11 (2020)
Abstract In this work, we deal with the blow-up solutions of the following parabolic p-Laplacian equations with a gradient source term: { ( b ( u ) ) t = ∇ ⋅ ( | ∇ u | p − 2 ∇ u ) + f ( x , u , | ∇ u | 2 , t ) in Ω × ( 0 , t ∗ ) , ∂
Externí odkaz:
https://doaj.org/article/c03c639ae82141c4bb4a69de5cb5a77c
Autor:
Wei Kou, Juntang Ding
Publikováno v:
Boundary Value Problems, Vol 2020, Iss 1, Pp 1-21 (2020)
Abstract We investigate the following nonlinear parabolic equations with nonlocal source and nonlinear boundary conditions: { ( g ( u ) ) t = ∑ i , j = 1 N ( a i j ( x ) u x i ) x j + γ 1 u m ( ∫ D u l d x ) p − γ 2 u r in D × ( 0 , t ∗ )
Externí odkaz:
https://doaj.org/article/56fcc3cdee954ac9bcae903d19a26be7
Autor:
Juntang Ding
Publikováno v:
Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-14 (2018)
Abstract This paper is devoted to studying the global existence and blow-up results for the following p-Laplacian parabolic problems: {(h(u))t=∇⋅(|∇u|p−2∇u)+f(u)in D×(0,t∗),∂u∂n=g(u)on ∂D×(0,t∗),u(x,0)=u0(x)≥0in D‾. $$\texts
Externí odkaz:
https://doaj.org/article/c7dc44ade22647d39199a34fc59e5aa7
Autor:
Juntang Ding, Xuhui Shen
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2017, Iss 99, Pp 1-15 (2018)
In this paper, we investigate the following quasilinear reaction diffusion equations $$ \begin{cases} \left(b(u)\right)_t =\nabla\cdot\left(\rho\left(|\nabla u|^2\right)\nabla u\right)+c(x)f(u) &\hbox{ in } \Omega\times(0,t^{*}),\\ \frac{\partial u}{
Externí odkaz:
https://doaj.org/article/f6eb419f9d744ab5a726804ba18b77d2
Autor:
Juntang Ding
Publikováno v:
Boundary Value Problems, Vol 2017, Iss 1, Pp 1-12 (2017)
Abstract In this paper, we deal with the blow-up and global solutions of the following p-Laplacian parabolic problems with Neumann boundary conditions: { ( g ( u ) ) t = ∇ ⋅ ( | ∇ u | p − 2 ∇ u ) + k ( t ) f ( u ) in Ω × ( 0 , T ) , ∂ u
Externí odkaz:
https://doaj.org/article/f68dc547f2fc48f99db7a3e2cb5876cc
Autor:
Juntang Ding
Publikováno v:
Journal of Inequalities and Applications, Vol 2016, Iss 1, Pp 1-11 (2016)
Abstract In this paper, we study the blow-up and global solutions of the following nonlinear reaction-diffusion equations under Neumann boundary conditions: { ( g ( u ) ) t = ∇ ⋅ ( a ( u ) b ( x ) ∇ u ) + f ( x , u ) in D × ( 0 , T ) , ∂ u
Externí odkaz:
https://doaj.org/article/9596ab826a9e48efb9c9e0e6c30f0a21
Autor:
Juntang Ding
Publikováno v:
Journal of Function Spaces, Vol 2016 (2016)
This paper deals with blow-up and global solutions of the following nonlinear reaction-diffusion equations under nonlinear boundary conditions: g(u)t=∇·au∇u+fu in Ω×0,T, ∂u/∂n=bx,u,t on ∂Ω×(0,T), u(x,0)=u0(x)>0, in Ω¯, where Ω⊂RN
Externí odkaz:
https://doaj.org/article/e4aea20170e0428ca9e00790d95869b9
Autor:
Juntang Ding
Publikováno v:
Abstract and Applied Analysis, Vol 2014 (2014)
We study the blow-up and global solutions for a class of quasilinear parabolic problems with Robin boundary conditions. By constructing auxiliary functions and using maximum principles, the sufficient conditions for the existence of blow-up solution,
Externí odkaz:
https://doaj.org/article/b4711fae693b49b0baa9b3e5ed6aa180
Autor:
Juntang Ding, Wenjun Pang
Publikováno v:
Applicable Analysis. :1-17